1
|
Mao W, Renner LD, Cornilleau C, Li de la Sierra-Gallay I, Afensiss S, Benlamara S, Ah-Seng Y, Van Tilbeurgh H, Nessler S, Bertin A, Chastanet A, Carballido-Lopez R. On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium. eLife 2023; 12:e84505. [PMID: 37818717 PMCID: PMC10718530 DOI: 10.7554/elife.84505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
In vivo, bacterial actin MreB assembles into dynamic membrane-associated filamentous structures that exhibit circumferential motion around the cell. Current knowledge of MreB biochemical and polymerization properties in vitro remains limited and is mostly based on MreB proteins from Gram-negative species. In this study, we report the first observation of organized protofilaments by electron microscopy and the first 3D-structure of MreB from a Gram-positive bacterium. We show that Geobacillus stearothermophilus MreB forms straight pairs of protofilaments on lipid surfaces in the presence of ATP or GTP, but not in the presence of ADP, GDP or non-hydrolysable ATP analogs. We demonstrate that membrane anchoring is mediated by two spatially close short hydrophobic sequences while electrostatic interactions also contribute to lipid binding, and show that the population of membrane-bound protofilament doublets is in steady-state. In solution, protofilament doublets were not detected in any condition tested. Instead, MreB formed large sheets regardless of the bound nucleotide, albeit at a higher critical concentration. Altogether, our results indicate that both lipids and ATP are facilitators of MreB polymerization, and are consistent with a dual effect of ATP hydrolysis, in promoting both membrane binding and filaments assembly/disassembly.
Collapse
Affiliation(s)
- Wei Mao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Lars D Renner
- Leibniz Institute of Polymer Research, and the Max-Bergmann-Center of BiomaterialsDresdenGermany
| | - Charlène Cornilleau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sana Afensiss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Sarah Benlamara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yoan Ah-Seng
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Herman Van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne Université, 75005ParisFrance
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| |
Collapse
|
2
|
Surfactin Shows Relatively Low Antimicrobial Activity against Bacillus subtilis and Other Bacterial Model Organisms in the Absence of Synergistic Metabolites. Microorganisms 2022; 10:microorganisms10040779. [PMID: 35456828 PMCID: PMC9030240 DOI: 10.3390/microorganisms10040779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Surfactin is described as a powerful biosurfactant and is natively produced by Bacillus subtilis in notable quantities. Among other industrially relevant characteristics, antimicrobial properties have been attributed to surfactin-producing Bacillus isolates. To investigate this property, stress approaches were carried out with biotechnologically established strains of Corynebacterium glutamicum, Bacillus subtilis, Escherichia coli and Pseudomonas putida with the highest possible amounts of surfactin. Contrary to the popular opinion, the highest growth-reducing effects were detectable in B. subtilis and E. coli after surfactin treatment of 100 g/L with 35 and 33%, respectively, while P. putida showed no growth-specific response. In contrast, other antimicrobial biosurfactants, like rhamnolipids and sophorolipids, showed significantly stronger effects on bacterial growth. Since the addition of high amounts of surfactin in defined mineral salt medium reduced the cell growth of B. subtilis by about 40%, the initial stress response at the protein level was analyzed by mass spectrometry, showing induction of stress proteins under control of alternative sigma factors σB and σW as well as the activation of LiaRS two-component system. Overall, although surfactin is associated with antimicrobial properties, relatively low growth-reducing effects could be demonstrated after the surfactin addition, challenging the general claim of the antimicrobial properties of surfactin.
Collapse
|
3
|
Pinkas D, Fišer R, Kozlík P, Dolejšová T, Hryzáková K, Konopásek I, Mikušová G. Bacillus subtilis cardiolipin protects its own membrane against surfactin-induced permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183405. [DOI: 10.1016/j.bbamem.2020.183405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
|
4
|
Luo Y, Javed MA, Deneer H, Chen X. Nutrient depletion-induced production of tri-acylated glycerophospholipids in Acinetobacter radioresistens. Sci Rep 2018; 8:7470. [PMID: 29748546 PMCID: PMC5945596 DOI: 10.1038/s41598-018-25869-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/01/2018] [Indexed: 12/04/2022] Open
Abstract
Bacteria inhabit a vast range of biological niches and have evolved diverse mechanisms to cope with environmental stressors. The genus Acinetobacter comprises a complex group of Gram-negative bacteria. Some of these bacteria such as A. baumannii are nosocomial pathogens. They are often resistant to multiple antibiotics and are associated with epidemic outbreaks. A. radioresistens is generally considered to be a commensal bacterium on human skin or an opportunistic pathogen. Interestingly, this species has exceptional resistance to a range of environmental challenges which contributes to its persistence in clinical environment and on human skin. We studied changes in its lipid composition induced by the onset of stationary phase. This strain produced triglycerides (TG) as well as four common phospholipids: phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL) and lysocardiolipin (LCL). It also produced small amounts of acyl-phosphatidylglycerol (APG). As the bacterial growth entered the stationary phase, the lipidome switched from one dominated by PE and PG to another dominated by CL and LCL. Surprisingly, bacteria in the stationary phase produced N-acyl-phosphatidylethanolamine (NAPE) and another rare lipid we tentatively name as 1-phosphatidyl-2-acyl-glycero-3-phosphoethanolamine (PAGPE) based on tandem mass spectrometry. It is possible these tri-acylated lipids play an important role in coping with nutrient depletion.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Muhammad Afzal Javed
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Harry Deneer
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Molecular Microbiology Laboratory, Division of Clinical Microbiology, Saskatoon Health Region, Saskatoon, Saskatchewan, Canada
| | - Xialu Chen
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Luo Y, Javed MA, Deneer H. Comparative study on nutrient depletion-induced lipidome adaptations in Staphylococcus haemolyticus and Staphylococcus epidermidis. Sci Rep 2018; 8:2356. [PMID: 29402937 PMCID: PMC5799182 DOI: 10.1038/s41598-018-20801-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/24/2018] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus species are emerging opportunistic pathogens that cause outbreaks of hospital and community-acquired infections. Some of these bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) are difficult to treat due to their resistance to multiple antibiotics. We carried out a comparative study on the lipidome adaptations in response to starvation in the two most common coagulase-negative Staphylococcus species: a S. epidermidis strain sensitive to ampicillin and erythromycin and a S. haemolyticus strain resistant to both. The predominant fatty acid composition in glycerolipids was (17:0-15:0) in both bacteria. During the exponential phase, the two bacterial lipidomes were similar. Both were dominated by diacylglycerol (DAG), phosphatidylglycerol (PG), lysyl-phosphatidylglycerol (Lysyl-PG) and Diglucosyl-diacylglycerol (DGDG). Alanyl-PG was detected in small amounts in both bacterial lipids. N-succinyl-lysyl-PG was detected only in S. haemolyticus, while lysyl-DAG only in S. epidermidis. As the two bacteria entered stationary phase, both lipidomes became essentially nitrogen-free. Both bacteria accumulated large amounts of free fatty acids. Strikingly, the lipidome of S. epidermidis became dominated by cardiolipin (CL), while that of S. haemolyticus was simplified to DGDG and PG. The S. epidermidis strain also produced acyl-phosphatidylglycerol (APG) in the stationary phase.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Muhammad Afzal Javed
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Harry Deneer
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Molecular Microbiology Laboratory, Division of Clinical Microbiology, Saskatoon Health Region, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Bernat P, Paraszkiewicz K, Siewiera P, Moryl M, Płaza G, Chojniak J. Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria. World J Microbiol Biotechnol 2016; 32:157. [PMID: 27550437 PMCID: PMC4993802 DOI: 10.1007/s11274-016-2126-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/11/2016] [Indexed: 11/30/2022]
Abstract
Abstract Urinary tract infections are a common disease in humans. Therefore, new methods are needed to destroy biofilms that are formed by uropathogens. Iturin A lipopeptides (LPs) C14 and C15 are potent biosurfactants synthetized by the Bacillus subtilis I′1a strain. The biological activity of extracted LPs was confirmed by examining extracts from I′1a cultures against uropathogenic bacteria that had been isolated from biofilms on urinary catheters. Compared with cultures of DSM 3257, which produce surfactin at a relatively low level, the extract obtained from strain I′1a exhibited a greater inhibitory effect against both planktonic and sessile forms of Escherichia coli, Serratia marcescens, Enterobacter cloacae, Proteus mirabilis, Citrobacter freundii and Enterococcus faecalis. Moreover, cyclic LP biosurfactants may disturb the integrity of cytoplasmic membranes; therefore, we investigated the effects of synthetized LPs on fatty acids and phospholipids of B. subtilis. LPs and lipids were analyzed using GC–MS, LC–MS/MS and MALDI-TOF/TOF techniques. Compared with B. subtilis DSM 3257, membranes of the I′1a strain were characterized by an increased amount of anteiso fatty acids and a ten-fold higher ratio of phosphatidylglycerol (PG)-to-phosphatidylethanolamine (PE). Interestingly, in cultures of B. subtilis DSM 3257 supplemented with LP extracts of the I′1a strain, the PG-to-PE ratio was fourfold higher, and the amount of anteiso fatty acids was also increased. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Paulina Siewiera
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Magdalena Moryl
- Department of Immunobiology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Grażyna Płaza
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Kossutha Street 6, 40-844, Katowice, Poland
| | - Joanna Chojniak
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Kossutha Street 6, 40-844, Katowice, Poland
| |
Collapse
|
7
|
Analysis of phosphate and phosphate containing headgroups enzymatically cleaved from phospholipids of Bacillus subtilis by capillary electrophoresis. Anal Bioanal Chem 2015; 407:7215-20. [DOI: 10.1007/s00216-015-8885-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 01/20/2023]
|
8
|
Bierhanzl VM, Čabala R, Ston M, Kubinec R, Szabó AH, Podolec P. Gas chromatography with mass spectrometry analysis of phosphoserine, phosphoethanolamine, phosphoglycerol, and phosphate. J Sep Sci 2014; 38:67-72. [DOI: 10.1002/jssc.201400657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/12/2014] [Accepted: 10/19/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Václav Matěj Bierhanzl
- Faculty of Science; Department of Analytical Chemistry; Charles University in Prague; Prague Czech Republic
| | - Radomír Čabala
- Faculty of Science; Department of Analytical Chemistry; Charles University in Prague; Prague Czech Republic
- Institute of Forensic Medicine and Toxicology; General University Hospital in Prague; Prague Czech Republic
| | - Martin Ston
- Faculty of Science; Department of Analytical Chemistry; Charles University in Prague; Prague Czech Republic
| | - Róbert Kubinec
- Faculty of Natural Sciences; Institute of Chemistry; Comenius University; Bratislava Slovakia
- Distillchem; s.r.o; Makov Slovakia
| | | | - Peter Podolec
- Faculty of Natural Sciences; Institute of Chemistry; Comenius University; Bratislava Slovakia
| |
Collapse
|
9
|
Christ NA, Bochmann S, Gottstein D, Duchardt-Ferner E, Hellmich UA, Düsterhus S, Kötter P, Güntert P, Entian KD, Wöhnert J. The First structure of a lantibiotic immunity protein, SpaI from Bacillus subtilis, reveals a novel fold. J Biol Chem 2012; 287:35286-35298. [PMID: 22904324 PMCID: PMC3471728 DOI: 10.1074/jbc.m112.401620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/16/2012] [Indexed: 11/06/2022] Open
Abstract
Lantibiotics are peptide-derived antibiotics that inhibit the growth of Gram-positive bacteria via interactions with lipid II and lipid II-dependent pore formation in the bacterial membrane. Due to their general mode of action the Gram-positive producer strains need to express immunity proteins (LanI proteins) for protection against their own lantibiotics. Little is known about the immunity mechanism protecting the producer strain against its own lantibiotic on the molecular level. So far, no structures have been reported for any LanI protein. We solved the structure of SpaI, a LanI protein from the subtilin producing strain Bacillus subtilis ATCC 6633. SpaI is a 16.8-kDa lipoprotein that is attached to the outside of the cytoplasmic membrane via a covalent diacylglycerol anchor. SpaI together with the ABC transporter SpaFEG protects the B. subtilis membrane from subtilin insertion. The solution-NMR structure of a 15-kDa biologically active C-terminal fragment reveals a novel fold. We also demonstrate that the first 20 N-terminal amino acids not present in this C-terminal fragment are unstructured in solution and are required for interactions with lipid membranes. Additionally, growth tests reveal that these 20 N-terminal residues are important for the immunity mediated by SpaI but most likely are not part of a possible subtilin binding site. Our findings are the first step on the way of understanding the immunity mechanism of B. subtilis in particular and of other lantibiotic producing strains in general.
Collapse
Affiliation(s)
- Nina A Christ
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Sophie Bochmann
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Daniel Gottstein
- Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ute A Hellmich
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Stefanie Düsterhus
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Peter Güntert
- Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes," Goethe University, 60438 Frankfurt am Main, Germany.
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany; Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes," Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Rapid and effective method for the separation of Bacillus subtilis vegetative cells and spores. Folia Microbiol (Praha) 2012; 57:455-7. [DOI: 10.1007/s12223-012-0157-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
|
11
|
Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents — review. Folia Microbiol (Praha) 2009; 54:263-72. [DOI: 10.1007/s12223-009-0046-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 04/30/2009] [Indexed: 10/20/2022]
|