1
|
Wang W, Xu T, Lu H, Li G, Gao L, Liu D, Han B, Yi S. Chloroplast genome of Justicia procumbens: genomic features, comparative analysis, and phylogenetic relationships among Justicieae species. J Appl Genet 2024; 65:31-46. [PMID: 38133708 DOI: 10.1007/s13353-023-00812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Justicia procumbens L. is a traditional medicinal plant that is widely distributed in China. However, little is known about the genetic diversity and evolution of this genus, and no genomic studies have been carried out on J. procumbens previously. In this study, we aimed to assemble and annotate the first complete chloroplast genome (cpDNA) of J. procumbens and compare it with all previously published cpDNAs within the tribe Justicieae. Genome structure and comparative and phylogenetic analyses were performed. The 150,454 bp-long J. procumbens cpDNA has a circular and quadripartite structure consisting of a large single copy, a small single copy, and two inverted repeat regions. It contains 133 genes, of which 88 are protein-coding genes, 37 are tRNA genes, and eight are rRNA genes. Twenty-four simple sequence repeats (SSRs) and 81 repeat sequences were identified. Comparative analyses with other Justicieae species revealed that the non-coding regions of J. procumbens cpDNA showed greater variation than did the coding regions. Moreover, phylogenetic analysis based on 14 cpDNA sequences from Justicieae species showed that J. procumbens and J. flava were most closely related. This study provides valuable genetic information to support further research on the genetic diversity and evolutionary development of the tribe Justicieae.
Collapse
Affiliation(s)
- Wei Wang
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Tao Xu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Haibo Lu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Guosi Li
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Leilei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Dong Liu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Bangxing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China.
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China.
| | - Shanyong Yi
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China.
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China.
| |
Collapse
|
2
|
Lihanová D, Lukáčová A, Beck T, Jedlička A, Vešelényiová D, Krajčovič J, Vesteg M. Versatile biotechnological applications of Euglena gracilis. World J Microbiol Biotechnol 2023; 39:133. [PMID: 36959517 DOI: 10.1007/s11274-023-03585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Euglena gracilis is a freshwater protist possessing secondary chloroplasts of green algal origin. Various physical factors (e.g. UV) and chemical compounds (e.g. antibiotics) cause the bleaching of E. gracilis cells-the loss of plastid genes leading to the permanent inability to photosynthesize. Bleaching can be prevented by antimutagens (i.e. lignin, vitamin C and selenium). Besides screening the mutagenic and antimutagenic activity of chemicals, E. gracilis is also a suitable model for studying the biological effects of many organic pollutants. Due to its capability of heavy metal sequestration, it can be used for bioremediation. E. gracilis has been successfully transformed, offering the possibility of genetic modifications for synthesizing compounds of biotechnological interest. The novel design of the "next generation" transgenic expression cassettes with respect to the specificities of euglenid gene expression is proposed. Moreover, E. gracilis is a natural source of commercially relevant bioproducts such as (pro)vitamins, wax esters, polyunsaturated fatty acids and paramylon (β-1,3-glucan). One of the highest limitations of large-scale cultivation of E. gracilis is its disability to synthesize essential vitamins B1 and B12. This disadvantage can be overcome by co-cultivation of E. gracilis with other microorganisms, which can synthesize sufficient amounts of these vitamins. Such co-cultures can be used for the effective accumulation and harvesting of Euglena biomass by bioflocculation.
Collapse
Grants
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
Collapse
Affiliation(s)
- Diana Lihanová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Alexandra Lukáčová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Terézia Beck
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Andrej Jedlička
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Dominika Vešelényiová
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia.
| |
Collapse
|
3
|
Yang Y, Yao C, Chen X, Sheng K, Zhao M, Yao C, Yang Y, Ma G, Du A. Redundant targeting signals of the apicoplast-resident protein TgMnmA in Toxoplasma gondii involve trans-organellar function. Vet Parasitol 2023; 315:109888. [PMID: 36731210 DOI: 10.1016/j.vetpar.2023.109888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/23/2023]
Abstract
The apicoplast, which is the result of secondary endosymbiosis, is a distinctive subcellular organelle and a crucial therapeutic target for apicomplexan parasites. The majority of apicoplast-resident proteins are encoded by the nuclear genome and target the apicoplast via bipartite targeting signals consisting of a signal peptide and a transit peptide. The properties and functions of these peptides are poorly understood, which hinders the identification of apicoplast proteins and the study for plastid evolution. Here, the targeting signals of the recently discovered apicoplast tRNA thiouridylase TgMnmA of Toxoplasma gondii were analyzed. Our data using a reporter (the enhanced green fluorescent protein) fused with individual fragments containing various numbers of its N-terminal amino acids unequivocally revealed that the first 28 amino acids of TgMnmA functioned as a signal peptide for cellular secretion. The N-terminal 150 amino acids were sufficient to direct the fusion protein to the apicoplast, whereas its deletion caused the fusion protein to be localized to the mitochondrion. Our data further demonstrated that the apicoplast, rhoptry, and mitochondrion shared similar targeting signals, indicating that the apicoplast localization peptide was trans-organellar in function. In addition, the apicoplast localization peptide was important for the healthy proliferation of tachyzoites. In conclusion, the targeting signals of the nucleus-encoded apicoplast-targeted protein TgMnmA have been mapped out and the importance of this localization peptide has been elucidated in the current study.
Collapse
Affiliation(s)
- Yimin Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chenqian Yao
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kaiyin Sheng
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingxiu Zhao
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts and Nevis
| | - Yi Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Calpains in cyanobacteria and the origin of calpains. Sci Rep 2022; 12:13872. [PMID: 35974045 PMCID: PMC9380684 DOI: 10.1038/s41598-022-18228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Calpains are cysteine proteases involved in many cellular processes. They are an ancient and large superfamily of enzymes responsible for the cleavage and irreversible modification of a large variety of substrates. They have been intensively studied in humans and other mammals, but information about calpains in bacteria is scarce. Calpains have not been found among Archaea to date. In this study, we have investigated the presence of calpains in selected cyanobacterial species using in silico analyses. We show that calpains defined by possessing CysPC core domain are present in cyanobacterial genera Anabaena, Aphanizomenon, Calothrix, Chamaesiphon, Fischerella, Microcystis, Scytonema and Trichormus. Based on in silico protein interaction analysis, we have predicted putative interaction partners for identified cyanobacterial calpains. The phylogenetic analysis including cyanobacterial, other bacterial and eukaryotic calpains divided bacterial and eukaryotic calpains into two separate monophyletic clusters. We propose two possible evolutionary scenarios to explain this tree topology: (1) the eukaryotic ancestor or an archaeal ancestor of eukaryotes obtained calpain gene from an unknown bacterial donor, or alternatively (2) calpain gene had been already present in the last common universal ancestor and subsequently lost by the ancestor of Archaea, but retained by the ancestor of Bacteria and by the ancestor of Eukarya. Both scenarios would require multiple independent losses of calpain genes in various bacteria and eukaryotes.
Collapse
|
5
|
The Chloroplast Genome of Wild Saposhnikovia divaricata: Genomic Features, Comparative Analysis, and Phylogenetic Relationships. Genes (Basel) 2022; 13:genes13050931. [PMID: 35627316 PMCID: PMC9141249 DOI: 10.3390/genes13050931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Saposhnikovia divaricata, a well-known Chinese medicinal herb, is the sole species under the genus Saposhnikovia of the Apiaceae subfamily Apioideae Drude. However, information regarding its genetic diversity and evolution is still limited. In this study, the first complete chloroplast genome (cpDNA) of wild S. divaricata was generated using de novo sequencing technology. Similar to the characteristics of Ledebouriella seseloides, the 147,834 bp-long S. divaricata cpDNA contained a large single copy, a small single copy, and two inverted repeat regions. A total of 85 protein-coding, 8 ribosomal RNA, and 36 transfer RNA genes were identified. Compared with five other species, the non-coding regions in the S. divaricata cpDNA exhibited greater variation than the coding regions. Several repeat sequences were also discovered, namely, 33 forward, 14 reverse, 3 complement, and 49 microsatellite repeats. Furthermore, phylogenetic analysis using 47 cpDNA sequences of Apioideae members revealed that L. seseloides and S. divaricata clustered together with a 100% bootstrap value, thereby supporting the validity of renaming L. seseloides to S. divaricata at the genomic level. Notably, S. divaricata was most closely related to Libanotis buchtormensis, which contradicts previous reports. Therefore, these findings provide a valuable foundation for future studies on the genetic diversity and evolution of S. divaricata.
Collapse
|
6
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
7
|
Hadariová L, Vesteg M, Birčák E, Schwartzbach SD, Krajčovič J. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Curr Genet 2016; 63:331-341. [PMID: 27553633 DOI: 10.1007/s00294-016-0641-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022]
Abstract
Euglena gracilis growth with antibacterial agents leads to bleaching, permanent plastid gene loss. Colorless Euglena (Astasia) longa resembles a bleached E. gracilis. To evaluate the role of bleaching in E. longa evolution, the effect of streptomycin, a plastid protein synthesis inhibitor, and ofloxacin, a plastid DNA gyrase inhibitor, on E. gracilis and E. longa growth and plastid DNA content were compared. E. gracilis growth was unaffected by streptomycin and ofloxacin. Quantitative PCR analyses revealed a time dependent loss of plastid genes in E. gracilis demonstrating that bleaching agents produce plastid gene deletions without affecting cell growth. Streptomycin and ofloxacin inhibited E. longa growth indicating that it requires plastid genes to survive. This suggests that evolutionary divergence of E. longa from E. gracilis was triggered by the loss of a cytoplasmic metabolic activity also occurring in the plastid. Plastid metabolism has become obligatory for E. longa cell growth. A process termed "intermittent bleaching", short term exposure to subsaturating concentrations of reversible bleaching agents followed by growth in the absence of a bleaching agent, is proposed as the molecular mechanism for E. longa plastid genome reduction. Various non-photosynthetic lineages could have independently arisen from their photosynthetic ancestors via a similar process.
Collapse
Affiliation(s)
- Lucia Hadariová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Erik Birčák
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic
| | | | - Juraj Krajčovič
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic. .,Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia.
| |
Collapse
|
8
|
Lim GS, Barrett CF, Pang CC, Davis JI. Drastic reduction of plastome size in the mycoheterotrophic Thismia tentaculata relative to that of its autotrophic relative Tacca chantrieri. AMERICAN JOURNAL OF BOTANY 2016; 103:1129-37. [PMID: 27335389 DOI: 10.3732/ajb.1600042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/06/2016] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Heterotrophic angiosperms tend to have reduced plastome sizes relative to those of their autotrophic relatives because genes that code for proteins involved in photosynthesis are lost. However, some plastid-encoded proteins may have vital nonphotosynthetic functions, and the plastome therefore may be retained after the loss of photosynthesis. METHODS We sequenced the plastome of the mycoheterotrophic species Thismia tentaculata and a representative of its sister genus, Tacca chantrieri, using next-generation technology, and we compared sequences and structures of genes and genomes of these species. KEY RESULTS The plastome of Tacca chantrieri is similar to those of other autotrophic taxa of Dioscoreaceae, except in a few local rearrangements and one gene loss. The plastome of Thismia tentaculata is ca. 16 kbp long with a quadripartite structure and is among the smallest known plastomes. Synteny is minimal between the plastomes of Tacca chantrieri and Thismia tentaculata. The latter includes only 12 candidate genes, with all except accD involved in protein synthesis. Of the 12 genes, trnE, trnfM, and accD are frequently among the few that remain in depauperate plastomes. CONCLUSIONS The plastome of Thismia tentaculata, like those of most other heterotrophic plants, includes a small number of genes previously suggested to be essential to plastome survival.
Collapse
Affiliation(s)
- Gwynne S Lim
- The New York Botanical Garden, Pfizer Plant Research Laboratory, 2900 Southern Boulevard, Bronx, New York 10458 USA L. H. Bailey Hortorium, Section of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, New York 14853 USA
| | - Craig F Barrett
- Department of Biology, Life Sciences Building, PO Box 6057, Morgantown, West Virginia 26506 USA
| | - Chun-Chiu Pang
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jerrold I Davis
- L. H. Bailey Hortorium, Section of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, New York 14853 USA
| |
Collapse
|
9
|
|
10
|
Stiller JW. Toward an empirical framework for interpreting plastid evolution. JOURNAL OF PHYCOLOGY 2014; 50:462-471. [PMID: 26988319 DOI: 10.1111/jpy.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 06/05/2023]
Abstract
The idea that evolutionary models should minimize plastid endosymbioses has dominated thinking about the history of eukaryotic photosynthesis. Although a reasonable starting point, this framework has not gained support from observed patterns of algal and plant evolution, and can be an obstacle to fully understanding the modern distribution of plastids. Empirical data indicate that plastid losses are extremely uncommon, that major changes in plastid biochemistry/architecture are evidence of an endosymbiotic event, and that comparable selection pressures can lead to remarkable convergences in algae with different endosymbiotic origins. Such empirically based generalizations can provide a more realistic philosophical framework for interpreting complex and often contradictory results from phylogenomic investigations of algal evolution.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
11
|
Mulders KJM, Lamers PP, Martens DE, Wijffels RH. Phototrophic pigment production with microalgae: biological constraints and opportunities. JOURNAL OF PHYCOLOGY 2014; 50:229-42. [PMID: 26988181 DOI: 10.1111/jpy.12173] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/22/2013] [Indexed: 05/10/2023]
Abstract
There is increasing interest in naturally produced colorants, and microalgae represent a bio-technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal-based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β-carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented.
Collapse
Affiliation(s)
- Kim J M Mulders
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
- FeyeCon Development & Implementation, Rijnkade 17a, Weesp, 1382 GS, The Netherlands
| | - Packo P Lamers
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
| | - Dirk E Martens
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
| | - René H Wijffels
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering, Wageningen University, P.O. Box 8129, Wageningen, 6700 EV, The Netherlands
| |
Collapse
|
12
|
The falsifiability of the models for the origin of eukaryotes. Curr Genet 2011; 57:367-90. [DOI: 10.1007/s00294-011-0357-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/13/2023]
|
13
|
Zechmann B, Tomasić A, Horvat L, Fulgosi H. Subcellular distribution of glutathione and cysteine in cyanobacteria. PROTOPLASMA 2010; 246:65-72. [PMID: 20349253 PMCID: PMC2947007 DOI: 10.1007/s00709-010-0126-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 02/19/2010] [Indexed: 05/13/2023]
Abstract
Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.
Collapse
Affiliation(s)
- Bernd Zechmann
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010, Graz, Austria.
| | | | | | | |
Collapse
|
14
|
del Campo EM, del Hoyo A, Royo C, Casano LM, Alvarez R, Barreno E. A single primer pair gives a specific ortholog amplicon in a wide range of Cyanobacteria and plastid-bearing organisms: applicability in inventory of reference material from collections and phylogenetic analysis. Mol Phylogenet Evol 2010; 57:1323-8. [PMID: 20875864 DOI: 10.1016/j.ympev.2010.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/13/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
The scarcity of universally applied molecular markers for algae has resulted in the development of multiple, independent and not easily comparable systems. The goal of this work is to increase the number of available molecular markers and to generate easily comparable systems. Thereby, we have designed a primer pair capable of amplifying a broad range of organisms: Cyanobacteria, Chlorophyta, Chlorarachniophyta, Cryptophyta, Euglenida, Glaucophyta, Rhodophyta, Stramenopiles and Streptophyta including plants. This primer pair can amplify a portion of the 23S rRNA gene with sufficient variability to identify reference material form collections across a broad range of taxa and perform phylogenetic studies alongside other available markers.
Collapse
Affiliation(s)
- E M del Campo
- Department of Plant Biology, University of Alcalá, 28871-Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Vesteg M, Vacula R, Steiner JM, Mateásiková B, Löffelhardt W, Brejová B, Krajcovic J. A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res 2010; 17:223-31. [PMID: 20587589 PMCID: PMC2920757 DOI: 10.1093/dnares/dsq015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The chloroplasts of Euglena gracilis bounded by three membranes arose via secondary endosymbiosis of a green alga in a heterotrophic euglenozoan host. Many genes were transferred from symbiont to the host nucleus. A subset of Euglena nuclear genes of predominately symbiont, but also host, or other origin have obtained complex presequences required for chloroplast targeting. This study has revealed the presence of short introns (41–93 bp) either in the second half of presequence-encoding regions or shortly downstream of them in nine nucleus-encoded E. gracilis genes for chloroplast proteins (Eno29, GapA, PetA, PetF, PetJ, PsaF, PsbM, PsbO, and PsbW). In addition, the E. gracilis Pbgd gene contains two introns in the second half of presequence-encoding region and one at the border of presequence-mature peptide-encoding region. Ten of 12 introns present within presequence-encoding regions or shortly downstream of them identified in this study have typical eukaryotic GT/AG borders, are T-rich, 45–50 bp long, and pairwise sequence identities range from 27 to 61%. Thus single recombination events might have been mediated via these cis-spliced introns. A double crossing over between these cis-spliced introns and trans-spliced introns present in 5′-UTRs of Euglena nuclear genes is also likely to have occurred. Thus introns and exon-shuffling could have had an important role in the acquisition of chloroplast targeting signals in E. gracilis. The results are consistent with a late origin of photosynthetic euglenids.
Collapse
Affiliation(s)
- Matej Vesteg
- Institute of Cell Biology and Biotechnology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|