1
|
Seman-Kamarulzaman AF, Pariamiskal FA, Azidi AN, Hassan M. A Review on Digestive System of Rhynchophorus ferrugineus as Potential Target to Develop Control Strategies. INSECTS 2023; 14:506. [PMID: 37367322 PMCID: PMC10299146 DOI: 10.3390/insects14060506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Rhynchophorus ferrugineus, commonly known as red palm weevil (RPW), is a high-risk insect pest that has become a threat to many important palm species. There are several dominant factors that lead to the successful infestation of RPW, including its stealthy lifestyle, highly chitinized mouthpart, and high fecundity rate. Due to that, millions of dollars of losses have been suffered by many countries invaded by RPW. Several methods have been designed to control its invasion, including the usage of insecticides, but many cause resistance and environmental pollution. Therefore, an environmentally friendly insecticide that targets specific systems or pathways in RPW is urgently needed. One of the potential targets is the digestive system of RPW, as it is the major interface between the insect and its plant host. The related knowledge of RPW's digestive system, such as the anatomy, microflora, transcriptomic analysis, and proteomic analysis, is important to understand its effects on RPW's survival. Several data from different omics regarding the digestive systems of RPW have been published in separate reports. Some of the potential targets have been reported to be inhibited by certain potential insecticides, while other targets have not yet been tested with any inhibitors. Hence, this review may lead to a better understanding on managing infestations of RPW using the system biology approach for its digestive system.
Collapse
Affiliation(s)
- Ahmad-Faris Seman-Kamarulzaman
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.-K.); (F.A.P.)
- Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, Bandar Tun Abdul Razak Jengka 26400, Pahang, Malaysia
| | - Faizatul Atikah Pariamiskal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.-K.); (F.A.P.)
| | - Amiratul Nabihah Azidi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.-K.); (F.A.P.)
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.-F.S.-K.); (F.A.P.)
| |
Collapse
|
2
|
Polenogova OV, Noskov YA, Artemchenko AS, Zhangissina S, Klementeva TN, Yaroslavtseva ON, Khodyrev VP, Kruykova NA, Glupov VV. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. PEST MANAGEMENT SCIENCE 2022; 78:3823-3835. [PMID: 35238478 DOI: 10.1002/ps.6856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5×) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5×) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4×) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4×) after 24 h and increased (1.1-1.5×) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Olga V Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - Anna S Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Saule Zhangissina
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor P Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A Kruykova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
BOĞ EŞ, ERTÜRK Ö, YAMAN M. Pathogenicity of aerobic bacteria isolated from honeybees (Apis mellifera) in Ordu Province. TURKISH JOURNAL OF VETERINARY AND ANIMAL SCIENCES 2020. [DOI: 10.3906/vet-1905-67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Fierros-Romero G, Gómez-Ramírez M, Sharma A, Pless RC, Rojas-Avelizapa NG. czcD gene from Bacillus megaterium and Microbacterium liquefaciens as a potential nickel-vanadium soil pollution biomarker. J Basic Microbiol 2019; 60:22-26. [PMID: 31692013 DOI: 10.1002/jobm.201900323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/09/2019] [Indexed: 01/22/2023]
Abstract
Metals are among the most prevalent pollutants released into the environment. For these reasons, the use of biomarkers for environmental monitoring of individuals and populations exposed to metal pollution has gained considerable attention, offering fast and sensitive detection of chemical stress in organisms. There are different metal resistance genes in bacteria that can be used as biomarkers, including cation diffusion facilitators carrying metal ions; the prototype is the cobalt-zinc-cadmium transporter (czcD). The present study reports the expression changes in the czcD gene in Bacillus megaterium and Microbacterium liquefaciens under nickel and vanadium exposure by real-time polymerase chain reaction. The nickel-vanadium-resistant strains of B. megaterium and M. liquefaciens used in this study were isolated from mine tailings in Guanajuato, Mexico. The czcD gene showed high expression under exposure to 200 ppm of Ni and 200 ppm of V during the logarithmic growth phase of M. liquefaciens in PHGII liquid media. In contrast, no changes were observed in B. megaterium during logarithmic and stationary growth, perhaps due to the gene having differential expression during the growth phases. The expression profiles obtained for czcD show the possibility of using this gene from M. liquefaciens as a biomarker of nickel and vanadium pollution in microorganisms.
Collapse
Affiliation(s)
- Grisel Fierros-Romero
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Mexico.,School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Querétaro, Mexico
| | - Marlenne Gómez-Ramírez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Mexico
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Querétaro, Mexico
| | - Reynaldo C Pless
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Mexico
| | - Norma G Rojas-Avelizapa
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Querétaro, Mexico
| |
Collapse
|
5
|
Gut Bacterial Communities of Dendroctonus valens and D. mexicanus (Curculionidae: Scolytinae): A Metagenomic Analysis across Different Geographical Locations in Mexico. Int J Mol Sci 2018; 19:ijms19092578. [PMID: 30200218 PMCID: PMC6164411 DOI: 10.3390/ijms19092578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023] Open
Abstract
Dendroctonus bark beetles are a worldwide significant pest of conifers. This genus comprises 20 species found in North and Central America, and Eurasia. Several studies have documented the microbiota associated with these bark beetles, but little is known regarding how the gut bacterial communities change across host range distribution. We use pyrosequencing to characterize the gut bacterial communities associated with six populations of Dendroctonus valens and D. mexicanus each across Mexico, determine the core bacteriome of both insects and infer the metabolic pathways of these communities with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to evaluate whether these routes are conserved across geographical locations. Our results show that the β-diversity with UniFrac unweighted varies among locations of both bark beetles mainly due to absence/presence of some rare taxa. No association is found between the pairwise phylogenetic distance of bacterial communities and geographic distance. A strict intraspecific core bacteriome is determined for each bark beetle species, but these cores are different in composition and abundance. However, both bark beetles share the interspecific core bacteriome recorded previously for the Dendroctonus genus consisting of Enterobacter, Pantoea, Providencia, Pseudomonas, Rahnella, and Serratia. The predictions of metabolic pathways are the same in the different localities, suggesting that they are conserved through the geographical locations.
Collapse
|
6
|
Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): diversity, core members and co-evolutionary patterns. Sci Rep 2017; 7:13864. [PMID: 29066751 PMCID: PMC5655642 DOI: 10.1038/s41598-017-14031-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022] Open
Abstract
Dendroctonus bark beetles comprise 20 taxonomically recognized species, which are one of the most destructive pine forest pests in North and Central America, and Eurasia. The aims of this study were to characterize the gut bacterial diversity, to determine the core bacteriome and to explore the ecological association between these bacteria and bark beetles. A total of five bacterial phyla were identified in the gut of 13 Dendroctonus species; Proteobacteria was the most abundant, followed by Firmicutes, Fusobacteria, Actinobacteria and Deinococcus-Thermus. The α-diversity was low as demonstrated in previous studies and significant differences in β-diversity were observed. The core bacteriome was composed of Enterobacter, Pantoea, Pseudomonas, Rahnella, Raoultella, and Serratia. The tanglegram between bacteria and bark beetles suggests that members of bacterial community are acquired from the environment, possibly from the host tree. These findings improve the knowledge about the bacterial community composition, and provide the bases to study the metabolic functions of these bacteria, as well as their interaction with these bark beetles.
Collapse
|
7
|
Fierros-Romero G, Wrosek-Cabrera JA, Gómez-Ramírez M, Pless RC, Rivas-Castillo AM, Rojas-Avelizapa NG. Expression Changes in Metal-Resistance Genes in Microbacterium liquefaciens Under Nickel and Vanadium Exposure. Curr Microbiol 2017; 74:840-847. [DOI: 10.1007/s00284-017-1252-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
|
8
|
Briones-Roblero CI, Hernández-García JA, Gonzalez-Escobedo R, Soto-Robles LV, Rivera-Orduña FN, Zúñiga G. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS One 2017; 12:e0175470. [PMID: 28406998 PMCID: PMC5391025 DOI: 10.1371/journal.pone.0175470] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect’s life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in β-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions.
Collapse
Affiliation(s)
- Carlos Iván Briones-Roblero
- Posgrado en Ciencias Quimicobiológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Departamento de Zoología, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Alfredo Hernández-García
- Posgrado en Ciencias Quimicobiológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Departamento de Zoología, Instituto Politécnico Nacional, Ciudad de México, México
| | - Roman Gonzalez-Escobedo
- Posgrado en Ciencias Quimicobiológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Departamento de Zoología, Instituto Politécnico Nacional, Ciudad de México, México
| | - L. Viridiana Soto-Robles
- Posgrado en Ciencias Quimicobiológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Departamento de Zoología, Instituto Politécnico Nacional, Ciudad de México, México
| | - Flor N. Rivera-Orduña
- Departamento de Microbiología, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gerardo Zúñiga
- Departamento de Zoología, Instituto Politécnico Nacional, Ciudad de México, México
- * E-mail:
| |
Collapse
|
9
|
Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zúñiga G, Rivera-Orduña FN. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol (Praha) 2016; 62:1-9. [PMID: 27544667 DOI: 10.1007/s12223-016-0469-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
Bark beetles (Curculionidae: Scolytinae) feed on the xylem and phloem of their host, which are composed of structural carbohydrates and organic compounds that are not easily degraded by the insects. Some of these compounds might be hydrolyzed by digestive enzymes produced by microbes present in the gut of these insects. In this study, we evaluated the enzymatic capacity of bacteria (Acinetobacter lwoffii, Arthrobacter sp., Pseudomonas putida, Pseudomonas azotoformans, and Rahnella sp.) and yeasts (Candida piceae, Candida oregonensis, Cyberlindnera americana, Zygoascus sp., and Rhodotorula mucilaginosa) isolated from the Dendroctonus rhizophagus gut to hydrolyze cellulose, xylan, pectin, starch, lipids, and esters. All isolates, with the exception of C. piceae, showed lipolytic activity. Furthermore, P. putida, P. azotoformans, C. americana, C. piceae, and R. mucilaginosa presented amylolytic activity. Esterase activity was shown by A. lwoffii, P. azotoformans, and Rahnella sp. Cellulolytic and xylanolytic activities were present only in Arthrobacter sp. and P. azotoformans. The pectinolytic activity was not recorded in any isolate. This is the first study to provide evidence on the capacity of microbes associated with the D. rhizophagus gut to hydrolyze specific substrates, which might cover part of the nutritional requirements for the development, fitness, and survival of these insects.
Collapse
Affiliation(s)
- Carlos I Briones-Roblero
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Variación Biológica y Evolución, Prol. Carpio Esq. Plan de Ayala s/n, Casco de Santo Tomás, C. P. 11340, México D. F, Mexico
| | - Roberto Rodríguez-Díaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Ecología Microbiana, Prol. Carpio Esq. Plan de Ayala s/n, Casco de Santo Tomás, C. P. 11340, México D. F, Mexico
| | - José A Santiago-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Variación Biológica y Evolución, Prol. Carpio Esq. Plan de Ayala s/n, Casco de Santo Tomás, C. P. 11340, México D. F, Mexico
| | - Gerardo Zúñiga
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Variación Biológica y Evolución, Prol. Carpio Esq. Plan de Ayala s/n, Casco de Santo Tomás, C. P. 11340, México D. F, Mexico
| | - Flor N Rivera-Orduña
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Ecología Microbiana, Prol. Carpio Esq. Plan de Ayala s/n, Casco de Santo Tomás, C. P. 11340, México D. F, Mexico.
| |
Collapse
|
10
|
An in-depth characterization of the entomopathogenic strain Bacillus pumilus 15.1 reveals that it produces inclusion bodies similar to the parasporal crystals of Bacillus thuringiensis. Appl Microbiol Biotechnol 2016; 100:3637-54. [PMID: 26782747 DOI: 10.1007/s00253-015-7259-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
In the present work, the local isolate Bacillus pumilus 15.1 has been morphologically and biochemically characterized in order to gain a better understanding of this novel entomopathogenic strain active against Ceratitis capitata. This strain could represent an interesting biothechnological tool for the control of this pest. Here, we report on its nutrient preferences, extracellular enzyme production, motility mechanism, biofilm production, antibiotic suceptibility, natural resistance to chemical and physical insults, and morphology of the vegetative cells and spores. The pathogen was found to be β-hemolytic and susceptible to penicillin, ampicillin, chloramphenicol, gentamicin, kanamycin, rifampicin, tetracycline, and streptomycin. We also report a series of biocide, thermal, and UV treatments that reduce the viability of B. pumilus 15.1 by several orders of magnitude. Heat and chemical treatments kill at least 99.9 % of vegetative cells, but spores were much more resistant. Bleach was the only chemical that was able to completely eliminate B. pumilus 15.1 spores. Compared to the B. subtilis 168 spores, B. pumilus 15.1 spores were between 2.67 and 350 times more resistant to UV radiation while the vegetative cells of B. pumilus 15.1 were almost up to 3 orders of magnitude more resistant than the model strain. We performed electron microscopy for morphological characterization, and we observed geometric structures resembling the parasporal crystal inclusions synthesized by Bacillus thuringiensis. Some of the results obtained here such as the parasporal inclusion bodies produced by B. pumilus 15.1 could potentially represent virulence factors of this novel and potentially interesting strain.
Collapse
|
11
|
|
12
|
Demirci M, Sevim E, Demir İ, Sevim A. Culturable bacterial microbiota of Plagiodera versicolora (L.) (Coleoptera: Chrysomelidae) and virulence of the isolated strains. Folia Microbiol (Praha) 2012; 58:201-10. [PMID: 23054688 DOI: 10.1007/s12223-012-0199-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Plagiodera versicolora (Laicharting, 1781) (Coleoptera: Chrysomelidae) is an important forest pest which damages many trees such as willow, poplar, and hazelnut. In order to find new microbes that can be utilized as a possible microbial control agent against this pest, we investigated the culturable bacterial flora of it and tested the isolated bacteria against P. versicolora larvae and adults. We were able to isolate nine bacteria from larvae and adults. The isolates were characterized using a combination of morphological, biochemical, and physiological methods. Additionally, we sequenced the partial sequence of the 16S rRNA gene to verify conventional identification results. Based on characterization studies, the isolates were identified as Staphylococcus sp. Pv1, Rahnella sp. Pv2, Rahnella sp. Pv3, Rahnella sp. Pv4, Rahnella sp. Pv5, Pantoea agglomerans Pv6, Staphylococcus sp. Pv7, Micrococcus luteus Pv8, and Rahnella sp. Pv9. The highest insecticidal activity against larvae and adults was obtained from M. luteus Pv8 with 50 and 40 % mortalities within 10 days after treatment, respectively. Extracellular enzyme activity of the bacterial isolates such as amylase, proteinase, lipase, cellulose, and chitinase was also determined. Consequently, our results show that M. luteus Pv8 might be a good candidate as a possible microbial control agent against P. versicolora and were discussed with respect to biocontrol potential of the bacterial isolates.
Collapse
Affiliation(s)
- Meryem Demirci
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize-53100, Turkey
| | | | | | | |
Collapse
|