1
|
Long C, Qi XL, Venema K. Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review. Front Nutr 2022; 9:948302. [PMID: 36245487 PMCID: PMC9554435 DOI: 10.3389/fnut.2022.948302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 35% of rapeseed meal (RSM) dry matter (DM) are carbohydrates, half of which are water-soluble carbohydrates. The cell wall of rapeseed meal contains arabinan, galactomannan, homogalacturonan, rhamnogalacturonan I, type II arabinogalactan, glucuronoxylan, XXGG-type and XXXG-type xyloglucan, and cellulose. Glycoside hydrolases including in the degradation of RSM carbohydrates are α-L-Arabinofuranosidases (EC 3.2.1.55), endo-α-1,5-L-arabinanases (EC 3.2.1.99), Endo-1,4-β-mannanase (EC 3.2.1.78), β-mannosidase (EC 3.2.1.25), α-galactosidase (EC 3.2.1.22), reducing-end-disaccharide-lyase (pectate disaccharide-lyase) (EC 4.2.2.9), (1 → 4)-6-O-methyl-α-D-galacturonan lyase (pectin lyase) (EC 4.2.2.10), (1 → 4)-α-D-galacturonan reducing-end-trisaccharide-lyase (pectate trisaccharide-lyase) (EC 4.2.2.22), α-1,4-D-galacturonan lyase (pectate lyase) (EC 4.2.2.2), (1 → 4)-α-D-galacturonan glycanohydrolase (endo-polygalacturonase) (EC 3.2.1.15), Rhamnogalacturonan hydrolase, Rhamnogalacturonan lyase (EC 4.2.2.23), Exo-β-1,3-galactanase (EC 3.2.1.145), endo-β-1,6-galactanase (EC 3.2.1.164), Endo-β-1,4-glucanase (EC 3.2.1.4), α-xylosidase (EC 3.2.1.177), β-glucosidase (EC 3.2.1.21) endo-β-1,4-glucanase (EC 3.2.1.4), exo-β-1,4-glucanase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21). In conclusion, this review summarizes the chemical and nutritional compositions of RSM, and the microbial degradation of RSM cell wall carbohydrates which are important to allow to develop strategies to improve recalcitrant RSM carbohydrate degradation by the gut microbiota, and eventually to improve animal feed digestibility, feed efficiency, and animal performance.
Collapse
Affiliation(s)
- Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Koen Venema
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
- *Correspondence: Koen Venema
| |
Collapse
|
2
|
Jiang C, Yan H, Shen X, Zhang Y, Wang Y, Sun S, Jiang H, Zang H, Zhao X, Hou N, Li Z, Wang L, Wang H, Li C. Genome Functional Analysis of the Psychrotrophic Lignin-Degrading Bacterium Arthrobacter sp. C2 and the Role of DyP in Catalyzing Lignin Degradation. Front Microbiol 2022; 13:921549. [PMID: 35910642 PMCID: PMC9327799 DOI: 10.3389/fmicb.2022.921549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In the cold regions of China, lignin-rich corn straw accumulates at high levels due to low temperatures. The application of psychrotrophic lignin-degrading bacteria should be an effective means of overcoming the low-temperature limit for lignin degradation and promoting the utilization of corn straw. However, this application is limited by the lack of suitable strains for decomposition of lignin; furthermore, the metabolic mechanism of psychrotrophic lignin-degrading bacteria is unclear. Here, the whole genome of the psychrotrophic lignin-degrading bacterium Arthrobacter sp. C2, isolated in our previous work, was sequenced. Comparative genomics revealed that C2 contained unique genes related to lignin degradation and low-temperature adaptability. DyP may participate in lignin degradation and may be a cold-adapted enzyme. Moreover, DyP was proven to catalyze lignin Cα-Cβ bond cleavage. Deletion and complementation of the DyP gene verified its ability to catalyze the first-step reaction of lignin degradation. Comparative transcriptomic analysis revealed that the transcriptional expression of the DyP gene was upregulated, and the genetic compensation mechanism allowed C2ΔDyP to degrade lignin, which provided novel insights into the survival strategy of the psychrotrophic mutant strain C2ΔdyP. This study improved our understanding of the metabolic mechanism of psychrotrophic lignin-degrading bacteria and provided potential application options for energy-saving production using cold-adapted lignin-degrading enzymes.
Collapse
Affiliation(s)
- Cheng Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Haohao Yan
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Xiaohui Shen
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Yuting Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Yue Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Shanshan Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hanyi Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Ziwei Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Liwen Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hanjun Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
High surfactant-tolerant β-mannanase isolated from Dynastes hercules larvae excrement, and identification of its hotspot using site-directed mutagenesis and molecular dynamics simulations. Enzyme Microb Technol 2021; 154:109956. [PMID: 34871822 DOI: 10.1016/j.enzmictec.2021.109956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022]
Abstract
The β-mannanase from Bacillus subtilis HM7 (Man26HM7) isolated from Dynastes hercules larvae excrement was cloned and expressed in Escherichia coli. Biochemical characterization shows that optimal pH and temperature for catalysis are 6.0 and 50 °C, respectively. Man26HM7 displayed excellent surfactant stability by retaining 70% of initial activity in 1%(w/v) SDS, and more than 90% of initial activity in 1%(w/v) Triton X-100 and Tween 80. Results from amino acid sequence alignment and molecular modeling suggest residue 238 of β-mannanase as a hotspot of SDS-tolerance. Mutagenesis at the equivalent residue of another homolog, β-mannanase from Bacillus subtilis CAe24 (Man26CAe24), significantly enhanced the SDS stability of this enzyme. Comparative computational analysis, including molecular docking and molecular dynamics simulation, were then performed to compute the binding free energy of SDS to Man26HM7, Man26CAe24, and variant enzymes. The results suggest that residue 238 of Man26HM7 is involved in SDS binding to the hydrophobic surface of β-mannanase. This study provides not only the promising application of Man26HM7 in detergent and cleaning products but also valuable information for enhancing the surfactant stability of β-mannanase by enzyme engineering.
Collapse
|
4
|
Xie H, Poon CKK, Liu H, Wang D, Yang J, Han Z. Molecular and biochemical characterizations of a new cold-active and mildly alkaline β-Mannanase from Verrucomicrobiae DG1235. Prep Biochem Biotechnol 2021; 51:881-891. [PMID: 33439094 DOI: 10.1080/10826068.2020.1870235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mannanases catalyze the cleavage of β-1,4-mannosidic linkages in mannans and have various applications in different biotechnological industries. In this study, a new β-mannanase from Verrucomicrobiae DG1235 (ManDG1235) was biochemically characterized and its enzymatic properties were revealed. Amino acid alignment indicated that ManDG1235 belonged to glycoside hydrolase family 26 and shared a low amino acid sequence identity to reported β-mannanases (up to 50% for CjMan26C from Cellvibrio japonicus). ManDG1235 was expressed in Escherichia coli. Purified ManDG1235 (rManDG1235) exhibited the typical properties of cold-active enzymes, including high activity at low temperature (optimal at 20 °C) and thermal instability. The maximum activity of rManDG1235 was achieved at pH 8, suggesting that it is a mildly alkaline β-mannanase. rManDG1235 was able to hydrolyze a variety of mannan substrates and was active toward certain types of glucans. A structural model that was built by homology modeling suggested that ManDG1235 had four mannose-binding subsites which were symmetrically arranged in the active-site cleft. A long loop linking β2 and α2 as in CjMan26C creates a steric border in the glycone region of active-site cleft which probably leads to the exo-acting feature of ManDG1235, for specifically cleaving mannobiose from the non-reducing end of the substrate.
Collapse
Affiliation(s)
- Huifang Xie
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chun Kin Kingsley Poon
- Shanghai Xuhui Siqiao Science & Technology Research Center, Shanghai, China.,Shanghai High School International Division, Shanghai, China
| | - Hanyan Liu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Dan Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jiangke Yang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhenggang Han
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
Wang NN, Liu J, Li YX, Ma JW, Yan QJ, Jiang ZQ. High-level expression of a glycoside hydrolase family 26 β-mannanase from Aspergillus niger in Pichia pastoris for production of partially hydrolysed fenugreek gum. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Zhang R, Li XY, Cen XL, Gao QH, Zhang M, Li KY, Wu Q, Mu YL, Tang XH, Zhou JP, Huang ZX. Enzymatic preparation of manno-oligosaccharides from locust bean gum and palm kernel cake, and investigations into its prebiotic activity. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
7
|
Mohapatra BR. Characterization of β-mannanase extracted from a novel Streptomyces species Alg-S25 immobilized on chitosan nanoparticles. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1858158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bidyut Ranjan Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Bridgetown, Barbados
| |
Collapse
|
8
|
Ismail SA, Hassan AA, Emran MA. Economic production of thermo-active endo β-mannanase for the removal of food stain and production of antioxidant manno-oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Jana UK, Suryawanshi RK, Prajapati BP, Soni H, Kango N. Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. BIORESOURCE TECHNOLOGY 2018; 268:308-314. [PMID: 30092484 DOI: 10.1016/j.biortech.2018.07.143] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
A multi-tolerant β-mannanase (ManAo) was produced by Aspergillus oryzae on copra meal, a low-cost agro waste. Under statistically optimized conditions, 4.3-fold increase in β-mannanase production (434 U/gds) was obtained. Purified ManAo had MW ∼34 kDa and specific activity of 335.85 U/mg with optimum activity at 60 °C and at pH 5.0. Activity of ManAo was enhanced by most metal ions and modulators while maximum enhancement was noticed with Ag+ and Triton X-100. Km and Vmax were 2.7 mg/mL and 1388.8 µmol/min/mg for locust bean gum while the enzyme showed lower affinity towards konjac gum (8.8 mg/mL, 555.5 µmol/min/mg). Evaluation of various thermodynamic parameters indicated high-efficiency of the ManAo with activation energy 12.42 KJ/mol and 23.31 KJ/mol towards LBG and konjac gum, respectively. End product analysis of β-mannanase action by fluorescence assisted carbohydrate electrophoresis (FACE) revealed the generation of sugars from DP 1-4 with some higher DP MOS from different mannans.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Rahul Kumar Suryawanshi
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Bhanu Pratap Prajapati
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Hemant Soni
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP 470003, India.
| |
Collapse
|
10
|
Wu Q, Dou X, Wang Q, Guan Z, Cai Y, Liao X. Isolation of β-1,3-Glucanase-Producing Microorganisms from Poria cocos Cultivation Soil via Molecular Biology. Molecules 2018; 23:molecules23071555. [PMID: 29954113 PMCID: PMC6100237 DOI: 10.3390/molecules23071555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/26/2022] Open
Abstract
β-1,3-Glucanase is considered as a useful enzymatic tool for β-1,3-glucan degradation to produce (1→3)-linked β-glucan oligosaccharides with pharmacological activity properties. To validly isolate β-1,3-glucanase-producing microorganisms, the soil of Wolfiporia extensa, considered an environment rich in β-1,3-glucan-degrading microorganisms, was subjected to high throughput sequencing. The results demonstrated that the genera Streptomyces (1.90%) and Arthrobacter (0.78%) belonging to the order Actinomycetales (8.64%) in the phylum Actinobacteria (18.64%) were observed in soil for P. cocos cultivation (FTL1). Actinomycetes were considered as the candidates for isolation of glucan-degrading microorganisms. Out of 58 isolates, only 11 exhibited β-1,3-glucan-degrading activity. The isolate SYBCQL belonging to the genus Kitasatospora with β-1,3-glucan-degrading activity was found and reported for the first time and the isolate SYBC17 displayed the highest yield (1.02 U/mg) among the isolates. To check the β-1,3-glucanase contribution to β-1,3-glucan-degrading activity, two genes, 17-W and 17-Q, encoding β-1,3-glucanase in SYBC17 and one gene QLK1 in SYBCQL were cloned and expressed for verification at the molecular level. Our findings collectively showed that the isolates able to secrete β-1,3-glucanase could be obtained with the assistance of high-throughput sequencing and genes expression analysis. These methods provided technical support for isolating β-1,3-glucanase-producing microorganisms.
Collapse
Affiliation(s)
- Qiulan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xin Dou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Qi Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
11
|
Regmi S, Yoo HY, Choi YH, Choi YS, Yoo JC, Kim SW. Prospects for Bio-Industrial Application of an Extremely Alkaline Mannanase FromBacillus subtilissubsp.inaquosorumCSB31. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/22/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Sudip Regmi
- Department of Pharmacy, Chosun University; 309, Pilmun-daero Dong-Gu Gwangju 61452 Republic of Korea
| | - Hah Y. Yoo
- Department of Biotechnology, Sangmyung University; 20, Hongjimun 2-Gil Jongno-Gu Seoul 03016 Republic of Korea
| | - Yun H. Choi
- Department of Pharmacy, Chosun University; 309, Pilmun-daero Dong-Gu Gwangju 61452 Republic of Korea
| | - Yoon S. Choi
- Department of Pharmacy, Chosun University; 309, Pilmun-daero Dong-Gu Gwangju 61452 Republic of Korea
| | - Jin C. Yoo
- Department of Pharmacy, Chosun University; 309, Pilmun-daero Dong-Gu Gwangju 61452 Republic of Korea
| | - Seung W. Kim
- Department of Chemical and Biological Engineering, Korea University; 145, Anam-Ro Seongbuk-Gu Seoul 02841 Republic of Korea
| |
Collapse
|
12
|
Production, properties, and applications of endo-β-mannanases. Biotechnol Adv 2017; 35:1-19. [DOI: 10.1016/j.biotechadv.2016.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|