1
|
Guo F, Liu H, Li X, Hu Z, Huang J, Bi R, Abbas W, Guo Y, Wang Z. Sophy β-Glucan from the Black Yeast Aureobasidium pullulans Attenuates Salmonella-Induced Intestinal Epithelial Barrier Injury in Caco-2 Cell Monolayers via Exerting Anti-Oxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2023; 13:48. [PMID: 38247473 PMCID: PMC10812733 DOI: 10.3390/antiox13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
The zoonotic pathogens Salmonella spp. infection disrupted intestinal epithelial barrier function and induced local gastroenteritis and systemic inflammation in humans and animals. Sophy β-glucan, a water-soluble β-1,3/1,6-glucan synthesized from the black yeast Aureobasidium pullulans, was reported with immune-regulatory, anti-inflammatory, and anti-infective properties. Here, we investigated the protective role of sophy β-glucan on Salmonella enterica serotype Enteritidis (SE)-challenged Caco-2 cells monolayer and explored underlying action mechanisms. The results showed that pretreatment with sophy β-glucan blocked the adhesion and invasion of SE onto Caco-2 cells along with alleviating SE-induced epithelial barrier injury, as evidenced by increased trans-epithelial electrical resistance, decreased fluorescently-labeled dextran 4 flux permeability, and an enhanced Claudin-4 protein level in the SE-stimulated Caco-2 cell monolayer. Moreover, treatment with β-glucan down-regulated pro-inflammatory factors (IL-1β, IL-8, and TNF-α) while up-regulating anti-inflammatory factors IL-10 at mRNA and protein levels in SE-infected Caco-2 cells. Furthermore, sophy β-glucan strengthened the anti-oxidative capacity of Caco-2 monolayers cells by elevating T-AOC and SOD activity and inhibiting MDA production defending SE. Together, our data showed that sophy β-glucan could prevent intestinal epithelial injury induced by SE, possibly by exerting anti-oxidant and anti-inflammatory properties, and it might be helpful for controlling SE infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.G.); (H.L.); (X.L.); (Z.H.); (J.H.); (R.B.); (W.A.); (Y.G.)
| |
Collapse
|
2
|
Palzer KA, Bolduan V, Käfer R, Kleinert H, Bros M, Pautz A. The Role of KH-Type Splicing Regulatory Protein (KSRP) for Immune Functions and Tumorigenesis. Cells 2022; 11:cells11091482. [PMID: 35563788 PMCID: PMC9104899 DOI: 10.3390/cells11091482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional control of gene expression is one important mechanism that enables stringent and rapid modulation of cytokine, chemokines or growth factors expression, all relevant for immune or tumor cell function and communication. The RNA-binding protein KH-type splicing regulatory protein (KSRP) controls the mRNA stability of according genes by initiation of mRNA decay and inhibition of translation, and by enhancing the maturation of microRNAs. Therefore, KSRP plays a pivotal role in immune cell function and tumor progression. In this review, we summarize the current knowledge about KSRP with regard to the regulation of immunologically relevant targets, and the functional role of KSRP on immune responses and tumorigenesis. KSRP is involved in the control of myeloid hematopoiesis. Further, KSRP-mediated mRNA decay of pro-inflammatory factors is necessary to keep immune homeostasis. In case of infection, functional impairment of KSRP is important for the induction of robust immune responses. In this regard, KSRP seems to primarily dampen T helper cell 2 immune responses. In cancer, KSRP has often been associated with tumor growth and metastasis. In summary, aside of initiation of mRNA decay, the KSRP-mediated regulation of microRNA maturation seems to be especially important for its diverse biological functions, which warrants further in-depth examination.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
- Correspondence: ; Tel.: +49-6131-179276; Fax: +49-6131-179042
| |
Collapse
|
3
|
Zhang H, Wang Y, Li S, Tang X, Liang R, Yang X. SOCS3 protects against neonatal necrotizing enterocolitis via suppressing NLRP3 and AIM2 inflammasome activation and p65 nuclear translocation. Mol Immunol 2020; 122:21-27. [PMID: 32278838 DOI: 10.1016/j.molimm.2020.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is an acquired disorder of mucosal damage characterized by the diffuse or local necrosis of the intestine. The suppressor of cytokine signaling 3 (SOCS3) has been demonstrated to possess anti-inflammatory action in gastritis, ulcerative colitis and other inflammatory diseases. The present study aims to explore the effects of SOCS3 on LPS-induced colonic cell model of NEC, and investigate the underlying mechanisms. METHODS Expression of SOCS3 in tissue samples of NEC and LPS-induced enterocytes were evaluated by real-time quantitative PCR (RT-qPCR). Western blotting and enzyme-linked immunosorbent assay (ELISA) were applied to examine the effect of SOCS3 on inflammatory molecules. Co-immunoprecipitation assay were devoted to explore the relation between SOCS3 and TLR4. RESULTS We proved that SOCS3 was expressed at a low level in tissue samples of NEC and LPS-induced enterocytes, and LPS inhibited SOCS3 expression via JAK2/STAT3 pathway. Overexpression of SOCS3 weaken the LPS-induced inflammatory response in FHC and CACO2 cells. Moreover, SOCS3 downregulates proinflammatory cytokines by targeting TLR4, thus mediating the p65 nuclear translocation, and the activation of NLR family pyrin domain containing 3/absent in melanoma-2 (NLRP3/AIM2) inflammasome, ultimately reveals its anti-inflammatory effects. CONCLUSIONS Taken together, our data revealed that LPS inhibited SOCS3 expression via JAK2/STAT3 pathway, and SOCS3 protects enterocytes against NEC through mediating p65 nuclear translocation and NLRP3/AIM2 inflammasome activation in a TLR4 dependent manner.
Collapse
Affiliation(s)
- Hua Zhang
- Pediatric intensive care unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Yi Wang
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Sixiu Li
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Xiaojing Tang
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Ruobing Liang
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China
| | - Xuefeng Yang
- Neonatal Intensive Care Unit, The Affiliated Children's Hospital of Xi'an Jiaotong University, 69 Xijuyuan Lane, Xi'an, Shaanxi, 710003, China.
| |
Collapse
|
4
|
Yan M, Sun L, Li J, Yu H, Lin H, Yu T, Zhao F, Zhu M, Liu L, Geng Q, Kong H, Pan H, Yao M. RNA-binding protein KHSRP promotes tumor growth and metastasis in non-small cell lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:478. [PMID: 31775888 PMCID: PMC6882349 DOI: 10.1186/s13046-019-1479-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND KH-type splicing regulatory protein (KHSRP) plays an important role in cancer invasion, but the relevant mechanism is not well known. In the present study, we investigated the function and potential molecular mechanism of KHSRP in non-small cell lung cancer (NSCLC) metastasis and elucidated its clinical significance. METHODS Isobaric tags for relative and absolute quantitation and the SWATH™ approach were combined with nanoliquid chromatography-tandem mass spectrometry analysis to identify metastasis-associated nucleoproteins in NSCLC. Real-time PCR and Western blot were used to screen for metastasis-associated candidate molecules. Gene knockdown and overexpression were used to investigate their functions and molecular mechanisms in lung cancer cells. Coimmunoprecipitation (Co-IP) experiments were performed to identify the interactions between candidate molecules and their interacting proteins. Gene expression and its association with multiple clinicopathologic characteristics were analyzed by immunohistochemistry (IHC) and Western blot in human lung cancer specimens. RESULTS KHSRP was identified as a metastasis-associated candidate molecule. In NSCLC cell lines, knockdown of KHSRP significantly reduced lung cancer cell proliferation, migration, and invasion in vitro and in vivo, whereas overexpression of KHSRP did the opposite. Mechanistically, the protein heterogeneous nuclear ribonucleoprotein C (C1/C2) (HNRNPC) was identified to interact with KHSRP using Co-IP experiments. In NSCLC cell lines, overexpression of HNRNPC significantly promoted lung cancer cell proliferation, migration, and invasion in vitro and in vivo. KHSRP and HNRNPC may induce human lung cancer cell invasion and metastasis by activating the IFN-α-JAK-STAT1 signaling pathway. Drastically higher expression levels of KHSRP and HNRNPC were observed in lung cancer tissues compared to those in adjacent noncancerous tissues. Increased KHSRP and HNRNPC expression was significantly associated with advanced tumor stages and metastasis (both lymph node and distant). Kaplan-Meier survival analysis showed that patients with high KHSRP and HNRNPC expression levels were predicted to have the shortest survival times and to have a poor prognosis. CONCLUSIONS KHSRP plays an important role in NSCLC metastasis and may serve as a potential prognostic marker and novel therapeutic target for lung cancer metastasis treatment.
Collapse
Affiliation(s)
- Mingxia Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China.,Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Jing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Huajian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Hechun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Tao Yu
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Miaoxin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Lei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Qin Geng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Hanwei Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Hongyu Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China.
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China.
| |
Collapse
|