1
|
Cuamatzi-Flores J, Nava-Galicia S, Esquivel-Naranjo EU, Lopez Munguia A, Arroyo-Becerra A, Villalobos-López MA, Bibbins-Martínez M. Regulation of dye-decolorizing peroxidase gene expression in Pleurotus ostreatus grown on glycerol as the carbon source. PeerJ 2024; 12:e17467. [PMID: 38827301 PMCID: PMC11144388 DOI: 10.7717/peerj.17467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Dye-decolorizing peroxidases (DyPs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer reactions similarly to oxygenases. DyPs utilize hydrogen peroxide (H2O2) both as an electron acceptor co-substrate and as an electron donor when oxidized to their respective radicals. The production of both DyPs and lignin-modifying enzymes (LMEs) is regulated by the carbon source, although less readily metabolizable carbon sources do improve LME production. The present study analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyP activity, and the expression of three Pleos-dyp genes (Pleos-dyp1, Pleos-dyp2 and Pleos-dyp4), via real-time RT-qPCR, monitoring the time course of P. ostreatus cultures supplemented with either glycerol or glucose and Acetyl Yellow G (AYG) dye. The results obtained indicate that glycerol negatively affects P. ostreatus growth, giving a biomass production of 5.31 and 5.62 g/L with respective growth rates (micra; m) of 0.027 and 0.023 h-1 for fermentations in the absence and presence of AYG dye. In contrast, respective biomass production levels of 7.09 and 7.20 g/L and growth rates (μ) of 0.033 and 0.047 h-1 were observed in equivalent control fermentations conducted with glucose in the absence and presence of AYG dye. Higher DyP activity levels, 4,043 and 4,902 IU/L, were obtained for fermentations conducted on glycerol, equivalent to 2.6-fold and 3.16-fold higher than the activity observed when glucose is used as the carbon source. The differential regulation of the DyP-encoding genes in P. ostreatus were explored, evaluating the carbon source, the growth phase, and the influence of the dye. The global analysis of the expression patterns throughout the fermentation showed the up- and down- regulation of the three Pleos-dyp genes evaluated. The highest induction observed for the control media was that found for the Pleos-dyp1 gene, which is equivalent to an 11.1-fold increase in relative expression (log2) during the stationary phase of the culture (360 h), and for the glucose/AYG media was Pleos-dyp-4 with 8.28-fold increase after 168 h. In addition, glycerol preferentially induced the Pleos-dyp1 and Pleos-dyp2 genes, leading to respective 11.61 and 4.28-fold increases after 144 h. After 360 and 504 h of culture, 12.86 and 4.02-fold increases were observed in the induction levels presented by Pleos-dyp1 and Pleos-dyp2, respectively, in the presence of AYG. When transcription levels were referred to those found in the control media, adding AYG led to up-regulation of the three dyp genes throughout the fermentation. Contrary to the fermentation with glycerol, where up- and down-regulation was observed. The present study is the first report describing the effect of a less-metabolizable carbon source, such as glycerol, on the differential expression of DyP-encoding genes and their corresponding activity.
Collapse
Affiliation(s)
- Jorge Cuamatzi-Flores
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| | - Soley Nava-Galicia
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| | | | - Agustin Lopez Munguia
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Morelos, México
| | - Analilia Arroyo-Becerra
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| | | | - Martha Bibbins-Martínez
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| |
Collapse
|
2
|
Qin W, Guo S, Li Q, Tang A, Liu H, Liu Y. Biotransformation of the azo dye reactive orange 16 by Aspergillus flavus A5P1: Performance, genetic background, pathway, and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133562. [PMID: 38401208 DOI: 10.1016/j.jhazmat.2024.133562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/26/2024]
Abstract
This study reports the strain Aspergillus flavus A5P1 (A5P1), which is with the capable of degrading the azo dye reactive orange 16 (RO16). The mechanism of RO16 degradation by A5P1 was elucidated through genomic analysis, enzymatic analysis, degradation pathway analysis and oxidative stress analysis. Strain A5P1 exhibited aerobic degradation of RO16, with optimal degradation at an initial pH of 3.0. Genomic analysis indicates that strain A5P1 possesses the potential for acid tolerance and degradation of azo dye. Enzymatic analysis, combined with degradation product analysis, demonstrated that extracellular laccase, intracellular lignin peroxidase, and intracellular quinone reductase were likely key enzymes in the RO16 degradation process. Oxidative stress analysis revealed that cell stress responses may participate in the RO16 biotransformation process. The results indicated that the biotransformation of RO16 may involves biological processes such as transmembrane transport of RO16, cometabolism of the strain with RO16, and cell stress responses. These findings shed light on the biodegradation of RO16 by A5P1, indicating A5P1's potential for environmental remediation.
Collapse
Affiliation(s)
- Wen Qin
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Shiqi Guo
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Qingyun Li
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China; Key Laboratory of Guangxi Biorefinery, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Aixing Tang
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China; Key Laboratory of Guangxi Biorefinery, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Haibo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China
| | - Youyan Liu
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China; Key Laboratory of Guangxi Biorefinery, Guangxi University, 100 Daxue East Road, Nanning 530004, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Potential of low-cost TiO 2-PVC composite in photoelectrocatalytic degradation of reactive orange 16 under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47144-47157. [PMID: 36732455 DOI: 10.1007/s11356-023-25623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
In recent years, previously reported studies revealed a high efficiency of pollutant degradation by coupling photocatalysis and electrochemical processes (PECs) using titanium dioxide (TiO2) photoelectrode rather than using photocatalysis or electrocatalysis alone. However, some of the TiO2 photoelectrodes that have been reported were not cost-effective. This is due to the use of expensive chemicals and certain expensive equipment in the fabrication process, other than involving complicated preparation steps. Therefore, this study is aimed at investigating the PEC performance and stability of low-cost TiO2-polyvinyl chloride (TiO2-PVC) composite photoelectrode for Reactive Orange 16 (RO16) degradation. The materials characterisation using the ATR-FTIR, XRD and UV-Vis DRS proved that TiO2 and TiO2-PVC were successfully synthesised. The micrograph obtained for the surface characterisation using the FESEM showed that the smooth surface of freshly prepared photoelectrodes turned slightly rough with tiny pits formation after five continuous PEC processes. Nevertheless, the photoelectrode retained its original shape in good condition for further PEC processes. By PEC process, the fabricated photoelectrode showed 99.4% and 51.1% of colour and total organic carbon (TOC) removal, respectively, at optimised PEC parameters (1.0 mol L-1 NaCl concentration, 10 V applied voltage, 120 min degradation time and initial pH 2). Moreover, the fabricated photoelectrode demonstrated sufficient reusability potential (~ 96.3%) after five cycles of PEC processes. In summary, a low-cost and stable composite photoelectrode with high efficiency in RO16 degradation was successfully fabricated and could be potentially applied for other emerging pollutants degradation via the PEC degradation technique.
Collapse
|
4
|
Ruscasso F, Cavello I, Curutchet G, Cavalitto S. Antarctic yeasts: potential use in a biologic treatment of textile azo dyes. BIORESOUR BIOPROCESS 2022; 9:18. [PMID: 38647816 PMCID: PMC10991636 DOI: 10.1186/s40643-022-00507-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
We investigated the dye-removal potential of a collection of 61 cold-adapted yeasts from the King George Island, Antarctica, on agar plates supplemented with 100 mg L-1 of several textile dyes; among which isolates 81% decolorized Reactive Black 5 (RB-5), with 56% decolorizing Reactive Orange 16, but only 26% doing so with Reactive Blue 19 and Acid Blue 74. Furthermore, we evaluated the ligninolytic potential using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic-acid) diammonium salt-, 3,5-dimethoxy-4-hydroxybenzaldehydazine-, or manganese-supplemented plates but detected no activity, possibly due to a dye-removal mechanism involving reductases. The removal kinetics were studied in liquid medium supplemented with 100 mg L-1 of RB-5 in a selection of 9 yeasts. The highest volumetric-removal rates (η) were found for Candida sake 41E (4.14 mg L-1 h-1), Leucosporidium muscorum F20A (3.90 mg L-1 h-1), and Cystofilobasidium infirmominiatum F13E (3.90 mg L-1 h-1). Different UV-Vis spectra were obtained if the dye removal occurred by biodegradation or biosorption/bioaccumulation. L. muscorum F20A was selected to study the dye-removal mechanism of RB-5 and the effect of different chemical and environmental parameters on the process. Optimum dye-removal conditions were obtained with 10 g L-1 of glucose within an initial medium pH range of 5.0 to 6.0. Up to 700 mg L-1 of dye could be removed in 45 h. High-performance liquid chromatography profiles obtained were consistent with a biodegradation of the dye. Phytotoxicity was estimated by calculating the 50%-inhibition concentration (IC50) with Lactuca sativa L. seeds. These findings propose psychrophilic yeasts as a novel environmentally suitable alternative for the treatment of dye-industry wastewaters.
Collapse
Affiliation(s)
- F Ruscasso
- Centro de Investigación Y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP, CCT La Plata-CONICET, Calle 47 y 115, 1900, La Plata, Provincia de Buenos Aires, Argentina
| | - I Cavello
- Centro de Investigación Y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP, CCT La Plata-CONICET, Calle 47 y 115, 1900, La Plata, Provincia de Buenos Aires, Argentina.
| | - G Curutchet
- Instituto de Investigación E Ingeniería Ambiental -IIIA, UNSAM, CONICET, Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina
- Escuela de Ciencia Y Tecnología E Instituto de Investigación E Ingeniería Ambiental, UNASM, CONICET, Av. 25 de Mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina
| | - S Cavalitto
- Centro de Investigación Y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP, CCT La Plata-CONICET, Calle 47 y 115, 1900, La Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
5
|
Bharathi D, Nandagopal JGT, Ranjithkumar R, Gupta PK, Djearamane S. Microbial approaches for sustainable remediation of dye-contaminated wastewater: a review. Arch Microbiol 2022; 204:169. [PMID: 35157149 DOI: 10.1007/s00203-022-02767-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
The coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation. This work summarizes the overview and current research on the remediation of dye pollutants from the aqueous environment by microbial bio-sorbents, such as bacteria, fungi, algae, and yeast. In addition, dye degradation capabilities of microbial enzymes have been highlighted and discussed. Further, the influence of various experimental parameters, such as temperature, pH, and concentrations of nutrients, and dye, has been summarized. The proposed mechanism for dye removal by microorganisms is also discussed. The object of this review is to provide a state-of-the-art of microbial remediation technologies in eliminating dye pollutants from water resources.
Collapse
Affiliation(s)
- Devaraj Bharathi
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamil Nadu, 641028, India.
| | | | | | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900, Kampar, Perak, Malaysia
| |
Collapse
|
6
|
Olajuyigbe FM, Afere FP, Adetuyi OY, Fatokun CO. Decolorization of lignin-mimicking dyes by Stenotrophomonas sp. CFB-09: Enzyme activity, transformation dynamics and process optimization. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1935898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Folasade M. Olajuyigbe
- Department of Biochemistry, Enzyme Biotechnology and Environmental Health Unit, Federal University of Technology Akure, Ondo State, Nigeria
| | - Folakemi P. Afere
- Department of Biochemistry, Enzyme Biotechnology and Environmental Health Unit, Federal University of Technology Akure, Ondo State, Nigeria
| | - Oluwafijimi Y. Adetuyi
- Department of Biochemistry, Enzyme Biotechnology and Environmental Health Unit, Federal University of Technology Akure, Ondo State, Nigeria
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Cornelius O. Fatokun
- Department of Biochemistry, Enzyme Biotechnology and Environmental Health Unit, Federal University of Technology Akure, Ondo State, Nigeria
| |
Collapse
|
7
|
Ledakowicz S, Paździor K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021; 26:molecules26040870. [PMID: 33562176 PMCID: PMC7914684 DOI: 10.3390/molecules26040870] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 3 years alone, over 10,000 publications have appeared on the topic of dye removal, including over 300 reviews. Thus, the topic is very relevant, although there are few articles on the practical applications on an industrial scale of the results obtained in research laboratories. Therefore, in this review, we focus on advanced oxidation methods integrated with biological methods, widely recognized as highly efficient treatments for recalcitrant wastewater, that have the best chance of industrial application. It is extremely important to know all the phenomena and mechanisms that occur during the process of removing dyestuffs and the products of their degradation from wastewater to prevent their penetration into drinking water sources. Therefore, particular attention is paid to understanding the mechanisms of both chemical and biological degradation of dyes, and the kinetics of these processes, which are important from a design point of view, as well as the performance and implementation of these operations on a larger scale.
Collapse
|
8
|
Hu CY, Cheng HY, Yao XM, Li LZ, Liu HW, Guo WQ, Yan LS, Fu JL. Biodegradation and decolourization of methyl red by Aspergillus versicolor LH1. Prep Biochem Biotechnol 2020; 51:642-649. [PMID: 33226883 DOI: 10.1080/10826068.2020.1848868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Azo dyes constitute a significant environmental burden due to its toxicity, carcinogenicity, and hard biodegradation. The report here is focused on the decolorization and degradation treatment of azo dye methyl red (MR). Decolorization of MR using Aspergillus versicolor LH1 isolated from activated sludge was investigated. The maximum decolorization rate of 92.3% was obtained under the optimized conditions of sucrose as carbon source, 5d incubation age, pH 6.0, 140 mg/L initial concentration of MR and 2.5 g/L initial concentration of NaNO3. Biodegradation products of MR were investigated using HPLC-MS, FTIR, and GC-MS assays. It was revealed the three bonds of -C-N = in MR aromatic nucleus were disrupted, and benzoic acid was detected. Micronucleus test with Glycine max L. and Vicia faba L. demonstrated that MCN‰ (micronucleus permillage) of MR metabolites was less than MR solution. These findings provided evidence that A. versicolor LH1 is a candidate for MR degradation in industrial wastewater treatment.
Collapse
Affiliation(s)
- Cui Ying Hu
- College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, PR China
| | - Hong Ying Cheng
- College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, PR China
| | - Xue Mei Yao
- College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, PR China
| | - Liang Zhi Li
- College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, PR China
| | - Heng Wei Liu
- College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, PR China
| | - Wei Qiang Guo
- College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, PR China
| | - Li Shi Yan
- College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, PR China
| | - Jiao Long Fu
- College of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, PR China
| |
Collapse
|