1
|
Smenderovac E, Rheault K, Moisan MA, Emilson C, Brazeau É, Morency MJ, Gagné P, Maire V, Emilson E, Venier L, Martineau C. Desiccation as a suitable alternative to cold-storage of phyllosphere samples for DNA-based microbial community analyses. Sci Rep 2025; 15:4243. [PMID: 39905028 PMCID: PMC11794883 DOI: 10.1038/s41598-024-82367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
The study of microbial communities of the plant phyllosphere in remote locations using DNA-based approaches is limited by the challenges associated with their preservation in the field and during transportation. Freezing is a common DNA preservation strategy, but it may be unsuitable for leaf samples, or inaccessible in some locations. Other methods such as desiccation, ethanol or commercial preservatives are potential alternative DNA preservation methods for ambient temperature storage. In this study, we assessed the efficacy of desiccation (with silica gel packs), and of three preservation solutions (95% ethanol, RNAlater, LifeGuard) for the preservation of epiphytic phyllosphere communities of Populus tremuloides and Picea glauca at ambient indoor temperature (21 °C) for up to three weeks. We assessed effects on DNA concentration and quality and used metabarcoding to detect changes in bacterial and fungal communities between treatments over time. A secondary study was conducted on leaves of Populus grandidentata to further test the ability of the desiccation treatment to resolve differences between sampling sites. Silica gel packs were identified as effective ambient temperature preservative of phyllosphere bacterial and fungal communities. There were some changes in the communities compared to immediate extraction due to this treatment, but these changes did not affect the ability to distinguish tree species and sampling locations. Overall, our study supports the use of silica gel pack short term preservation at ambient temperature for phyllosphere samples intended for DNA-based microbial community analyses.
Collapse
Affiliation(s)
- Emily Smenderovac
- Great Lakes Forestry Centre, Natural Resources Canada, ontario, Canada.
- Laurentian Forestry Centre, Natural Resources Canada, Québec, Canada.
| | - Karelle Rheault
- Laurentian Forestry Centre, Natural Resources Canada, Québec, Canada
| | | | - Caroline Emilson
- Great Lakes Forestry Centre, Natural Resources Canada, ontario, Canada
| | - Élodie Brazeau
- Laurentian Forestry Centre, Natural Resources Canada, Québec, Canada
| | | | - Patrick Gagné
- Laurentian Forestry Centre, Natural Resources Canada, Québec, Canada
| | - Vincent Maire
- Université du Québec à Trois-Rivières, Québec, Canada
| | - Erik Emilson
- Great Lakes Forestry Centre, Natural Resources Canada, ontario, Canada
| | - Lisa Venier
- Great Lakes Forestry Centre, Natural Resources Canada, ontario, Canada
| | | |
Collapse
|
2
|
Purushothaman S, Meola M, Roloff T, Rooney AM, Egli A. Evaluation of DNA extraction kits for long-read shotgun metagenomics using Oxford Nanopore sequencing for rapid taxonomic and antimicrobial resistance detection. Sci Rep 2024; 14:29531. [PMID: 39604411 PMCID: PMC11603047 DOI: 10.1038/s41598-024-80660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
During a bacterial infection or colonization, the detection of antimicrobial resistance (AMR) is critical, but slow due to culture-based approaches for clinical and screening samples. Culture-based phenotypic AMR detection and confirmation require up to 72 hours (h) or even weeks for slow-growing bacteria. Direct shotgun metagenomics by long-read sequencing using Oxford Nanopore Technologies (ONT) may reduce the time for bacterial species and AMR gene identification. However, screening swabs for metagenomics is complex due to the range of Gram-negative and -positive bacteria, diverse AMR genes, and host DNA present in the samples. Therefore, DNA extraction is a critical initial step. We aimed to compare the performance of different DNA extraction protocols for ONT applications to reliably identify species and AMR genes using a shotgun long-read metagenomic approach. We included three different sample types: ZymoBIOMICS Microbial Community Standard, an in-house mock community of ESKAPE pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli (ESKAPE Mock), and anonymized clinical swab samples. We processed all sample types with four different DNA extraction kits utilizing different lysis (enzymatic vs. mechanical) and purification (spin-column vs. magnetic beads) methods. We used kits from Qiagen (QIAamp DNA Mini and QIAamp PowerFecal Pro DNA) and Promega (Maxwell RSC Cultured Cells and Maxwell RSC Buccal Swab DNA). After extraction, samples were subject to the Rapid Barcoding Kit (RBK004) for library preparation followed by sequencing on the GridION with R9.4.1 flow cells. The fast5 files were base called to fastq files using Guppy in High Accuracy (HAC) mode with the inbuilt MinKNOW software. Raw read quality was assessed using NanoPlot and human reads were removed using Minimap2 alignment against the Hg38 genome. Taxonomy identification was performed on the raw reads using Kraken2 and on assembled contigs using Minimap2. The AMR genes were identified using Minimap2 with alignment against the CARD database on both the raw reads and assembled contigs. We identified all bacterial species present in the Zymo Mock Community (8/8) and ESKAPE Mock (6/6) with Qiagen PowerFecal Pro DNA kit (chemical and mechanical lysis) at read and assembly levels. Enzymatic lysis retrieved fewer aligned bases for the Gram-positive species (Staphylococcus aureus and Enterococcus faecium) from the ESKAPE Mock on the assembly level compared to the mechanical lysis. We detected the AMR genes from Gram-negative and -positive species in the ESKAPE Mock with the QIAamp PowerFecal Pro DNA kit on reads level with a maximum median time of 1.9 h of sequencing. Long-read metagenomics with ONT may reduce the turnaround time in screening for AMR genes. Currently, the QIAamp PowerFecal Pro DNA kit (chemical and mechanical lysis) for DNA extraction along with the Rapid Barcoding Kit for the ONT sequencing captured the best taxonomy and AMR identification for our specific use case.
Collapse
Affiliation(s)
- Srinithi Purushothaman
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, Zurich, 8006, Switzerland
| | - Marco Meola
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, Zurich, 8006, Switzerland
| | - Tim Roloff
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, Zurich, 8006, Switzerland
| | - Ashley M Rooney
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, Zurich, 8006, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, Zurich, 8006, Switzerland.
| |
Collapse
|
3
|
Child HT, Wierzbicki L, Joslin GR, Tennant RK. Comparative evaluation of soil DNA extraction kits for long read metagenomic sequencing. Access Microbiol 2024; 6:000868.v3. [PMID: 39346682 PMCID: PMC11432601 DOI: 10.1099/acmi.0.000868.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Metagenomics has been transformative in our understanding of the diversity and function of soil microbial communities. Applying long read sequencing to whole genome shotgun metagenomics has the potential to revolutionise soil microbial ecology through improved taxonomic classification, functional characterisation and metagenome assembly. However, optimisation of robust methods for long read metagenomics of environmental samples remains undeveloped. In this study, Oxford Nanopore sequencing using samples from five commercially available soil DNA extraction kits was compared across four soil types, in order to optimise read length and reproducibility for comparative long read soil metagenomics. Average extracted DNA lengths varied considerably between kits, but longer DNA fragments did not translate consistently into read lengths. Highly variable decreases in the length of resulting reads from some kits were associated with poor classification rate and low reproducibility in microbial communities identified between technical repeats. Replicate samples from other kits showed more consistent conversion of extracted DNA fragment size into read length and resulted in more congruous microbial community representation. Furthermore, extraction kits showed significant differences in the community representation and structure they identified across all soil types. Overall, the QIAGEN DNeasy PowerSoil Pro Kit displayed the best suitability for reproducible long-read WGS metagenomic sequencing, although further optimisation of DNA purification and library preparation may enable translation of higher molecular weight DNA from other kits into longer read lengths. These findings provide a novel insight into the importance of optimising DNA extraction for achieving replicable results from long read metagenomic sequencing of environmental samples.
Collapse
Affiliation(s)
- Harry T. Child
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Lucy Wierzbicki
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Gabrielle R. Joslin
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Richard K. Tennant
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| |
Collapse
|
4
|
Reynolds MC, Cadillo-Quiroz H. Microbial DNA sample preservation and possible artifacts for field-based research in remote tropical peatlands. J Microbiol Methods 2024; 224:106997. [PMID: 39009285 DOI: 10.1016/j.mimet.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Surveying bacterial and archaeal microbial communities in host and environmental studies requires the collection and storage of samples. Many studies are conducted in distant locations challenging these prerequisites. The use of preserving buffers is an important alternative when lacking access to cryopreservation, however, its effectivity for samples with challenging chemistry or samples that provide opportunities for fast bacterial or archaeal growth upon exposure to an aerobic environment, like peat samples, requires methodological assessment. Here, in combination with an identified optimal DNA extraction kit for peat soil samples, we test the application of several commercial and a homemade preservation buffer and make recommendations on the method that can most effectively preserve a microbiome reflective of the original state. In treatments with a non-optimal buffer or in the absence, we observed notable community shifts beginning as early as three days post-preservation lowering diversity and community evenness, with growth-driven artifacts from a few specific phyla. However other buffers retain a very close composition relative to the original state, and we described several metrics to understand some variation across them. Due to the chemical effects of preservation buffers, it is critical to test their compatibility and reliability to preserve the original bacterial and archaeal community in different environments.
Collapse
Affiliation(s)
- Mark C Reynolds
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States; Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States; Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
5
|
Mejait A, Fildier A, Giroud B, Daniele G, Wiest L, Raviglione D, Kotarba J, Toulza E, Ramirez T, Lanseman A, Clerissi C, Vulliet E, Calvayrac C, Salvia MV. Validation of the Chemical and Biological Steps Required Implementing an Advanced Multi-Omics Approach for Assessing the Fate and Impact of Contaminants in Lagoon Sediments. Metabolites 2024; 14:454. [PMID: 39195550 DOI: 10.3390/metabo14080454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The increasing use of chemicals requires a better understanding of their presence and dynamics in the environment, as well as their impact on ecosystems. The aim of this study was to validate the first steps of an innovative multi-omics approach based on metabolomics and 16S metabarcoding data for analyses of the fate and impact of contaminants in Mediterranean lagoons. Semi-targeted analytical procedures for water and sediment matrices were implemented to assess chemical contamination of the lagoon: forty-six compounds were detected, 28 of which could be quantified in water (between 0.09 and 47.4 ng/L) and sediment (between 0.008 and 26.3 ng/g) samples using the UHPLC-MS/MS instrument. In addition, a non-targeted approach (UHPLC-HRMS) using four different sample preparation protocols based on solid/liquid extractions or an automated pressurized fluid extraction system (EDGE®) was carried out to determine the protocol with the best metabolome coverage, efficiency and reproducibility. Solid/liquid extraction using the solvent mixture acetonitrile/methanol (50/50) was evaluated as the best protocol. Microbial diversity in lagoon sediment was also measured after DNA extraction using five commercial extraction kits. Our study showed that the DNeasy PowerSoil Pro Qiagen kit (Promega, USA) was the most suitable for assessing microbial diversity in fresh sediment.
Collapse
Affiliation(s)
- Anouar Mejait
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
| | - Aurélie Fildier
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Barbara Giroud
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Gaëlle Daniele
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Laure Wiest
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Delphine Raviglione
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
- UFR Sciences Exactes et Expérimentales, Université de Perpignan, 66860 Perpignan, France
- Plateau MSXM Bio2Mar, Université de Perpignan, 66860 Perpignan, France
| | - Jules Kotarba
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
- UFR Sciences Exactes et Expérimentales, Université de Perpignan, 66860 Perpignan, France
| | - Eve Toulza
- IHPE, Université Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Triana Ramirez
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, CNRS, 66650 Banyuls-sur-Mer, France
- Biocapteurs-Analyse-Environnement, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Alexia Lanseman
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
| | - Camille Clerissi
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
| | - Emmanuelle Vulliet
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Christophe Calvayrac
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, CNRS, 66650 Banyuls-sur-Mer, France
- Biocapteurs-Analyse-Environnement, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Virginie Salvia
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
- UFR Sciences Exactes et Expérimentales, Université de Perpignan, 66860 Perpignan, France
| |
Collapse
|
6
|
Jensen TBN, Dall SM, Knutsson S, Karst SM, Albertsen M. High-throughput DNA extraction and cost-effective miniaturized metagenome and amplicon library preparation of soil samples for DNA sequencing. PLoS One 2024; 19:e0301446. [PMID: 38573983 PMCID: PMC10994328 DOI: 10.1371/journal.pone.0301446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Reductions in sequencing costs have enabled widespread use of shotgun metagenomics and amplicon sequencing, which have drastically improved our understanding of the microbial world. However, large sequencing projects are now hampered by the cost of library preparation and low sample throughput, comparatively to the actual sequencing costs. Here, we benchmarked three high-throughput DNA extraction methods: ZymoBIOMICS™ 96 MagBead DNA Kit, MP BiomedicalsTM FastDNATM-96 Soil Microbe DNA Kit, and DNeasy® 96 PowerSoil® Pro QIAcube® HT Kit. The DNA extractions were evaluated based on length, quality, quantity, and the observed microbial community across five diverse soil types. DNA extraction of all soil types was successful for all kits, however DNeasy® 96 PowerSoil® Pro QIAcube® HT Kit excelled across all performance parameters. We further used the nanoliter dispensing system I.DOT One to miniaturize Illumina amplicon and metagenomic library preparation volumes by a factor of 5 and 10, respectively, with no significant impact on the observed microbial communities. With these protocols, DNA extraction, metagenomic, or amplicon library preparation for one 96-well plate are approx. 3, 5, and 6 hours, respectively. Furthermore, the miniaturization of amplicon and metagenome library preparation reduces the chemical and plastic costs from 5.0 to 3.6 and 59 to 7.3 USD pr. sample. This enhanced efficiency and cost-effectiveness will enable researchers to undertake studies with greater sample sizes and diversity, thereby providing a richer, more detailed view of microbial communities and their dynamics.
Collapse
Affiliation(s)
- Thomas Bygh Nymann Jensen
- Center for Microbial Communities, Dept. of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Sebastian Mølvang Dall
- Center for Microbial Communities, Dept. of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simon Knutsson
- Center for Microbial Communities, Dept. of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Søren Michael Karst
- Center for Microbial Communities, Dept. of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Dept. of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Smenderovac E, Emilson C, Rheault K, Brazeau É, Morency MJ, Gagné P, Venier L, Martineau C. Drying as an effective method to store soil samples for DNA-based microbial community analyses: a comparative study. Sci Rep 2024; 14:1725. [PMID: 38242898 PMCID: PMC10798986 DOI: 10.1038/s41598-023-50541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
Soil sampling for environmental DNA in remote and semi-remote locations is often limited due to logistical constraints surrounding sample preservation, including no or limited access to a freezer. Freezing at - 20 °C is a common DNA preservation strategy, however, other methods such as desiccation, ethanol or commercial preservatives are available as potential alternative DNA preservation methods for room temperature storage. In this study, we assessed five preservation methods (CD1 solution, 95% Ethanol, Dry & Dry silica gel packs, RNAlater, LifeGuard) along with freezing at - 20 °C, against immediate extraction on organic and mineral soils for up to three weeks of preservation. We assessed direct effects on DNA concentration and quality, and used DNA metabarcoding to assess effects on bacterial and fungal communities. Drying with Dry & Dry led to no significant differences from immediate extraction. RNAlater led to lower DNA concentrations, but effects on community structures were comparable to freezing. CD1, LifeGuard and Ethanol either caused immediate significant shifts in community structure, degradation of DNA quality or changes in diversity metrics. Overall, our study supports the use of drying with silica gel packs as a cost-effective, and easily applied method for the short-term storage at room temperature for DNA-based microbial community analyses.
Collapse
Affiliation(s)
| | - Caroline Emilson
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | - Karelle Rheault
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | - Élodie Brazeau
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | | | - Patrick Gagné
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | - Lisa Venier
- Canadian Forest Service, Natural Resources Canada, Ottawa, Canada
| | | |
Collapse
|
8
|
Bomberg M, Miettinen H. Anionic nanocellulose as competing agent in microbial DNA extraction from mine process samples. J Microbiol Methods 2023; 215:106850. [PMID: 37907119 DOI: 10.1016/j.mimet.2023.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/04/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Microorganisms in flotation and minerals processing may significantly affect the grade and yield of metal concentrates. However, studying the phenomena requires working techniques to detach microorganisms and their DNA from mineral particles to which they strongly adhere. We developed a new method utilizing the competitive properties of anionic nanocellulose to block sorption of DNA to and detach microbial cells from mineral particles from ore processing. In general, up to one ng DNA mL-1 sample was obtained with the custom anionic nanocellulose method (CM) compared to DNA amounts below the Qubit assay's detection limit for extractions with a commercial kit (KIT). Similarly, 0.5-4 orders of magnitude more bacterial 16S and fungal 5.8S rRNA gene copies were detected by qPCR from CM treated samples compared to KIT extractions. A clear difference in the detected microbial community structure between CM and KIT extracted samples was also observed. Commercial kits optimized for mineral soils are easy to use and time efficient but may miss a considerable part of the microbial communities. A competing agent such as anionic nanocellulose may decrease the interaction between microorganisms or their DNA and minerals and provide a comprehensive view into the microbial communities in mineral processing environments.
Collapse
Affiliation(s)
- Malin Bomberg
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland.
| | - Hanna Miettinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland
| |
Collapse
|
9
|
Iturbe-Espinoza P, Bonte M, Weedon JT, Braster M, Brandt BW, van Spanning RJ. Correlating the succession of microbial communities from Nigerian soils to petroleum biodegradation. World J Microbiol Biotechnol 2023; 39:239. [PMID: 37392206 PMCID: PMC10314880 DOI: 10.1007/s11274-023-03656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/19/2023] [Indexed: 07/03/2023]
Abstract
Whilst biodegradation of different hydrocarbon components has been widely demonstrated to occur by specialist oil-degrading bacteria, less is known about the impact on microbial communities as a function of oil composition by comparing the biodegradation of chemically complex fuels to synthetic products. The objectives of this study were (i) to assess the biodegradation capacity and succession of microbial communities isolated from Nigerian soils in media with crude oil or synthetic oil as sole sources of carbon and energy, and (ii) to assess the temporal variability of the microbial community size. Community profiling was done using 16 S rRNA gene amplicon sequencing (Illumina), and oil profiling using gas chromatography. The biodegradation of natural and synthetic oil differed probably due to the content of sulfur that may interfere with the biodegradation of hydrocarbons. Both alkanes and PAHs in the natural oil were biodegraded faster than in the synthetic oil. Variable community responses were observed during the degradation of alkanes and more simple aromatic compounds, but at later phases of growth they became more homogeneous. The degradation capacity and the size of the community from the more-contaminated soil were higher than those from the less-contaminated soil. Six abundant organisms isolated from the cultures were found to biodegrade oil molecules in pure cultures. Ultimately, this knowledge may contribute to a better understanding of how to improve the biodegradation of crude oil by optimizing culturing conditions through inoculation or bioaugmentation of specific bacteria during ex-situ biodegradation such as biodigesters or landfarming.
Collapse
Affiliation(s)
- Paul Iturbe-Espinoza
- Systems biology lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085 (location code O|2-2E51), NL-1081HV, Amsterdam, The Netherlands.
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.
| | - Matthijs Bonte
- Shell Global Solutions International BV, The Hague, The Netherlands
- MB-Water, Amsterdam, The Netherlands
| | - James T Weedon
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Braster
- Systems biology lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085 (location code O|2-2E51), NL-1081HV, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Jm van Spanning
- Systems biology lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085 (location code O|2-2E51), NL-1081HV, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Cesar T, Salgaço MK, Mesa V, Sartoratto A, Sivieri K. Exploring the Association between Citrus Nutraceutical Eriocitrin and Metformin for Improving Pre-Diabetes in a Dynamic Microbiome Model. Pharmaceuticals (Basel) 2023; 16:650. [PMID: 37242433 PMCID: PMC10221435 DOI: 10.3390/ph16050650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Pre-diabetes is recognized as an altered metabolic state, which precedes type 2 diabetes, and it is associated with great dysfunction of the intestinal microbiota, known as dysbiosis. Natural compounds, capable of reducing blood glucose without side effects and with a beneficial effect on the microbiota, have been studied as substitutes or adjuvants to conventional hypoglycemic agents, such as metformin. In this work, the effect of the nutraceutical Eriomin®, a mixture of citrus flavonoids (eriocitrin, hesperidin, naringin, and didymin), which reduces glycemia and increases glucagon-like peptide-1 (GLP-1) in pre-diabetic patients, was tested in the Simulator of Human Intestinal Microbial Ecosystem (SHIME®), inoculated with pre-diabetic microbiota. After treatment with Eriomin® plus metformin, a significant increase in acetate and butyrate production was observed. Furthermore, sequencing of the 16S rRNA gene of the microorganisms showed that Eriomin® plus metformin stimulated the growth of Bacteroides and Subdoligranulum genera. Bacteroides are the largest fraction of the intestinal microbiota and are potential colonizers of the colon, with some species producing acetic and propionic fatty acids. In addition, Subdoligranulum species are associated with better host glycemic metabolism. In conclusion, Eriomin® associated with metformin improved the composition and metabolism of the intestinal microbiota, suggesting a potential use in pre-diabetes therapy.
Collapse
Affiliation(s)
- Thais Cesar
- Graduate Program in Food, Nutrition and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (T.C.)
| | - Mateus Kawata Salgaço
- Graduate Program in Food, Nutrition and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (T.C.)
| | - Victoria Mesa
- INSERM, UMR-S 1139 (3PHM), Faculty of Pharmacy, Université Paris Cité, F-75006 Paris, France
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Antioquia, Colombia
| | | | - Katia Sivieri
- Graduate Program in Food, Nutrition and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (T.C.)
| |
Collapse
|
11
|
De Oliveira FL, Salgaço MK, de Oliveira MT, Mesa V, Sartoratto A, Peregrino AM, Ramos WS, Sivieri K. Exploring the Potential of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 as Promising Psychobiotics Using SHIME. Nutrients 2023; 15:nu15061521. [PMID: 36986251 PMCID: PMC10056475 DOI: 10.3390/nu15061521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Psychobiotics are probiotics that have the characteristics of modulating central nervous system (CNS) functions or reconciled actions by the gut-brain axis (GBA) through neural, humoral and metabolic pathways to improve gastrointestinal activity as well as anxiolytic and even antidepressant abilities. The aim of this work was to evaluate the effect of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the gut microbiota of mildly anxious adults using SHIME®. The protocol included a one-week control period and two weeks of treatment with L. helveticus R0052 and B. longum R0175. Ammonia (NH4+), short chain fatty acids (SCFAs), gamma-aminobutyric acid (GABA), cytokines and microbiota composition were determined. Probiotic strains decreased significantly throughout the gastric phase. The highest survival rates were exhibited by L. helveticus R0052 (81.58%; 77.22%) after the gastric and intestinal phase when compared to B. longum (68.80%; 64.64%). At the genus level, a taxonomic assignment performed in the ascending colon in the SHIME® model showed that probiotics (7 and 14 days) significantly (p < 0.005) increased the abundance of Lactobacillus and Olsenella and significantly decreased Lachnospira and Escheria-Shigella. The probiotic treatment (7 and 14 days) decreased (p < 0.001) NH4+ production when compared to the control period. For SCFAs, we observed after probiotic treatment (14 days) an increase (p < 0.001) in acetic acid production and total SCFAs when compared to the control period. Probiotic treatment increased (p < 0.001) the secretion of anti-inflammatory (IL-6 and IL-10) and decreased (p < 0.001) pro-inflammatory cytokines (TNF-alpha) when compared to the control period. The gut-brain axis plays an important role in the gut microbiota, producing SCFAs and GABA, stimulating the production of anti-anxiety homeostasis. The signature of the microbiota in anxiety disorders provides a promising direction for the prevention of mental illness and opens a new perspective for using the psychobiotic as a main actor of therapeutic targets.
Collapse
Affiliation(s)
- Fellipe Lopes De Oliveira
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Mateus Kawata Salgaço
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | | | - Victoria Mesa
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculty of Pharmacy, F-75006 Paris, France
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Antioquia, Colombia
| | | | | | - Williams Santos Ramos
- APSEN Farmacêutica, Department of Medical Affairs, Santo Amaro 04753-001, SP, Brazil
| | - Katia Sivieri
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
- University of Araraquara-UNIARA, Araraquara 14801-320, SP, Brazil
| |
Collapse
|
12
|
Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem. Nat Microbiol 2022; 7:2089-2100. [PMID: 36329197 DOI: 10.1038/s41564-022-01252-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
So far, only members of the bacterial phyla Proteobacteria and Verrucomicrobia are known to grow methanotrophically under aerobic conditions. Here we report that this metabolic trait is also observed within the Actinobacteria. We enriched and cultivated a methanotrophic Mycobacterium from an extremely acidic biofilm growing on a cave wall at a gaseous chemocline interface between volcanic gases and the Earth's atmosphere. This Mycobacterium, for which we propose the name Candidatus Mycobacterium methanotrophicum, is closely related to well-known obligate pathogens such as M. tuberculosis and M. leprae. Genomic and proteomic analyses revealed that Candidatus M. methanotrophicum expresses a full suite of enzymes required for aerobic growth on methane, including a soluble methane monooxygenase that catalyses the hydroxylation of methane to methanol and enzymes involved in formaldehyde fixation via the ribulose monophosphate pathway. Growth experiments combined with stable isotope probing using 13C-labelled methane confirmed that Candidatus M. methanotrophicum can grow on methane as a sole carbon and energy source. A broader survey based on 16S metabarcoding suggests that species closely related to Candidatus M. methanotrophicum may be abundant in low-pH, high-methane environments.
Collapse
|
13
|
Vita MM, Iturbe-Espinoza P, Bonte M, Brandt BW, Braster M, Brown DM, van Spanning RJM. Oil Absorbent Polypropylene Particles Stimulate Biodegradation of Crude Oil by Microbial Consortia. Front Microbiol 2022; 13:853285. [PMID: 35677906 PMCID: PMC9169047 DOI: 10.3389/fmicb.2022.853285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Oil absorbent particles made from surface-modified polypropylene can be used to facilitate the removal of oil from the environment. In this study, we investigated to what extent absorbed oil was biodegraded and how this compared to the biodegradation of oil in water. To do so, we incubated two bacterial communities originating from the Niger Delta, an area subject to frequent oil spills, in the presence and absence of polypropylene particles. One community evolved from untreated soil whereas the second evolved from soil pre-exposed to oil. We observed that the polypropylene particles stimulated the growth of biofilms and enriched species from genera Mycobacterium, Sphingomonas and Parvibaculum. Cultures with polypropylene particles degraded more crude oil than those where the oil was present in suspension regardless of whether they were pre-exposed or not. Moreover, the community pre-exposed to crude oil had a different community structure and degraded more oil than the one from untreated soil. We conclude that the biodegradation rate of crude oil was enhanced by the pre-exposure of the bacterial communities to crude oil and by the use of oil-absorbing polypropylene materials. The data show that bacterial communities in the biofilms growing on the particles have an enhanced degradation capacity for oil.
Collapse
Affiliation(s)
- Madalina M Vita
- Systems Biology Lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Paul Iturbe-Espinoza
- Systems Biology Lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthijs Bonte
- Shell Global Solutions International BV, The Hague, Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martin Braster
- Systems Biology Lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - David M Brown
- Shell Global Solutions International BV, The Hague, Netherlands
| | - Rob J M van Spanning
- Systems Biology Lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Iturbe-Espinoza P, Bonte M, Gundlach E, Brandt BW, Braster M, van Spanning RJM. Adaptive changes of sediment microbial communities associated with cleanup of oil spills in Nigerian mangrove forests. MARINE POLLUTION BULLETIN 2022; 176:113406. [PMID: 35180540 DOI: 10.1016/j.marpolbul.2022.113406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The objectives of this study were to assess the influence on microbial communities resulting from i) the physical removal of free oil (pre-treatment or post-treatment), and ii) the level of oiling within a contaminated former mangrove forest. Sediment samples were collected before and after the removal of free oil. Before the process of remediation, a highly biodiverse mangrove microbiome which had adapted to history of recurring oil spills was observed. After removing the surface oil, the microbial diversity of the sediments reduced, with members of the phyla Firmicutes and Proteobacteria becoming dominant. This indicates that while water flushing reduced overall microbial diversity, it stimulated the growth of a more specialized bacterial community reported to be involved in hydrocarbon biodegradation. These results provide new insights on microbial communities and their succession in mangrove forest sediments, that will be useful for monitoring oil cleaning programs using water flushing to remove free oil.
Collapse
Affiliation(s)
- Paul Iturbe-Espinoza
- Systems Biology Lab, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Matthijs Bonte
- Shell Global Solutions International BV, The Hague, The Netherlands
| | | | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Braster
- Systems Biology Lab, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob J M van Spanning
- Systems Biology Lab, Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Kawai Y, Ozawa N, Fukuda T, Suzuki N, Mikata K. Development of an efficient antimicrobial susceptibility testing method with species identification by Nanopore sequencing of 16S rRNA amplicons. PLoS One 2022; 17:e0262912. [PMID: 35113894 PMCID: PMC8812843 DOI: 10.1371/journal.pone.0262912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/08/2022] [Indexed: 01/13/2023] Open
Abstract
While amplicon sequencing of 16S rRNA is a common method for studying microbial community, it has been difficult to identify genera and species using next-generation sequencers to examine some regions (e.g., V3-V4 of 16S rRNA) because of the short read lengths. However, the advent of third-generation sequencers has made it possible to analyze the full length of the 16S rRNA gene, which allowed for species level identification at low cost. In this study, we evaluated the accuracy of the identification with a third-generation sequencer, MinION from Oxford Nanopore Technologies, using nine indigenous bacteria that can pose problems with food poisoning and opportunistic infections as an example. We demonstrated that Enterococcus faecalis and Enterococcus hirae could be identified at the species level with an accuracy of 96.4% to 97.5%. We also demonstrated that the absolute counts of various bacteria could be determined by spiking the sample with a bacterium as an internal standard. Then, we tested whether this convenient bacterial identification method could evaluate the antibiotic sensitivities of multiple bacteria simultaneously. In order to evaluate antimicrobial susceptibility, a mock community, an artificial mixture of the nine bacterial strains, was prepared and cultured in the presence of the antibiotics ofloxacin or chloramphenicol, and the 16S rRNAs were analyzed by using Nanopore sequencer. We confirmed that antibiotic-induced cell count reductions could be measured simultaneously by quantifying the abundances of various bacteria in the mock community before and after culture. It was thus shown that the antibiotic sensitivities of multiple bacteria could be evaluated simultaneously, with distinction made between bactericidal action and bacteriostatic action. This methodology would allow rapid evaluation of antibiotic activity spectrum at the species level containing a wide variety of bacteria, such as biofilm bacteria and gut microbiota.
Collapse
Affiliation(s)
- Yuto Kawai
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd, Osaka, Japan
| | - Naoya Ozawa
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd, Osaka, Japan
| | - Takako Fukuda
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd, Osaka, Japan
| | - Noriyuki Suzuki
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd, Osaka, Japan
| | - Kazuki Mikata
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd, Osaka, Japan
| |
Collapse
|
16
|
Dully V, Rech G, Wilding TA, Lanzén A, MacKichan K, Berrill I, Stoeck T. Comparing sediment preservation methods for genomic biomonitoring of coastal marine ecosystems. MARINE POLLUTION BULLETIN 2021; 173:113129. [PMID: 34784523 DOI: 10.1016/j.marpolbul.2021.113129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
To avoid loss of genetic information in environmental DNA (eDNA) field samples, the preservation of nucleic acids during field sampling is a critical step. In the development of standard operating procedures (SOPs) for eDNA-based compliance monitoring, the effect of different routinely used sediment preservations on biological community structures serving as bioindicators has gone untested. We compared eDNA metabarcoding results of marine bacterial communities from sample aliquots that were treated with a nucleic acid preservation solution (treated samples) and aliquots that were frozen without further treatment (non-treated samples). Sediment samples were obtained from coastal locations subjected to different stressors (aquaculture, urbanization, industry). DNA extraction efficiency, bacterial community profiles, and measures of alpha- and beta-diversity were highly congruent between treated and non-treated samples. As both preservation methods provide the same relevant information to environmental managers and regulators, we recommend the inclusion of both methods into SOPs for biomonitoring in marine coastal environments.
Collapse
Affiliation(s)
- Verena Dully
- Technische Universität Kaiserslautern, Ecology, D-67663 Kaiserslautern, Germany
| | - Giulia Rech
- Technische Universität Kaiserslautern, Ecology, D-67663 Kaiserslautern, Germany
| | - Thomas A Wilding
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Scotland, United Kingdom
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Iain Berrill
- Scottish Salmon Producers Organization, Edinburgh, Scotland, United Kingdom
| | - Thorsten Stoeck
- Technische Universität Kaiserslautern, Ecology, D-67663 Kaiserslautern, Germany.
| |
Collapse
|