1
|
Pickens V, Hall B, Yeater K, Purvis T, Bird E, Brooke G, Olds C, Nayduch D. Bacterial abundance and antimicrobial resistance prevalence carried by adult house flies (Diptera: Muscidae) at Kansas dairy and beef cattle operations. JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf052. [PMID: 40261132 DOI: 10.1093/jme/tjaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
House flies (Musca domestica L.) are filth-breeding pests of urban and rural environments around the world. Frequenting microbe-rich substrates for nutritional and reproductive needs, house flies pose a risk to human and animal health through their carriage and transmission of pathogenic and antimicrobial resistant bacteria (AMR). Adult house flies were collected from Kansas beef and dairy cattle operations to assess factors influencing bacterial abundance and AMR incidence flies. Aerobic culturable bacteria and suspected coliforms (SC) were enumerated from fly homogenate cultured on nonselective (tryptic soy agar) and selective (violet-red bile agar VRBA) media, respectively. Unique morphotypes of SC isolates were screened for tetracycline resistance and tested for resistance to 4 additional antibiotics to identify multi-drug resistant (MDR) isolates. Female house flies carried greater abundances of both culturable bacteria and SC than male flies. Abiotic factors such as ambient and soil temperatures correlated with culturable bacteria and SC abundances in flies, but farm type correlated only with SC abundance and trends of resistance phenotypes observed in SC isolates. Male and female flies from both farm types carried one or more AMR and MDR SC isolates (73.02% AMR and 31.09% MDR). The majority of AMR and MDR bacteria were Escherichia/Shigella sp., which possessed the widest range of phenotypic resistance variability found in our study. Our results further emphasize the role house flies play in harboring bacteria of risk to human and animal health and identified factors of potential use for the development of strategies to mitigate house fly transmission of bacterial pathogens and AMR within confined cattle operations.
Collapse
Affiliation(s)
- Victoria Pickens
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Brandon Hall
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Kathleen Yeater
- USDA-ARS, Office of the Area Director, Williamsburg, VA, USA
| | - Tanya Purvis
- USDA-ARS-PA, Center for Grain and Animal Health Research, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS, USA
| | - Edward Bird
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Grant Brooke
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Cassandra Olds
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Dana Nayduch
- USDA-ARS-PA, Center for Grain and Animal Health Research, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS, USA
| |
Collapse
|
2
|
Sohidullah M, Rahman MH, Sayeed A, Rahman S, Yesmin L, Chowdhury MI, Hossain MJ, Alam MA, Salauddin M, Rahman MH, Rahman MT, Sabbir SK. Exploration of Shrimp and Their Environments for the Detection of Antibiotic Resistance Genes of Vibrio parahaemolyticus and Spectrophotometry of Shrimp Muscles for Heavy Metals and Their Human Health Risk Assessment in Bangladesh. J Food Prot 2025; 88:100475. [PMID: 40024592 DOI: 10.1016/j.jfp.2025.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Through deteriorating the quality of shrimp, Vibrio parahaemolyticus and heavy metals have become threatened to food safety. The study was conducted to explore shrimp and their environments for antibiotic resistance genes of V. parahaemolyticus and perform spectrophotometry of shrimp muscles for heavy metals and their human health risk assessment. In total, 130 samples (shrimp, water, and sediment) were aseptically collected from 27 ponds in four areas of Khulna and Satkhira districts where the number of water and sediments was corresponded to the number of ponds and the number of shrimps differed from pond to pond. V. parahaemolyticus were detected by cultural, staining, biochemical, and molecular techniques targeting groEL, tetA, tetB, tetC, and blaTEM genes. Disc diffusion assay and bivariate analysis were performed for investigating antibiotic resistance profiles of V. parahaemolyticus. Cadmium, chromium, lead, zinc, and iron were measured by AAS (atomic absorption spectrometry) in shrimp. Among 39 isolates (23 from shrimp, 7 from water, 9 from sediment), real-time PCR (polymerase chain reaction) detected 20 of 27 as positive for groEL, 12 of 20 for tetA, 13 for tetB, 12 for tetC, and 1 for blaTEM. V. parahaemolyticus were highly resistant to tetracycline and ampicillin. Bivariate analysis revealed a significant correlation between the antibiotics. A total of 51.28% of isolates were MDR (multidrug resistant), and the MAR (multiple antibiotic resistance) indices ranged from 0.08 to 0.6. The highest average concentration for Cd was in Debhata, Pb in Dumuria, Cr in Kaliganj, Zn and Fe in Satkhira Sadar. THQ (target hazard quotients) of >1 for Fe in all sampling sites showed a higher level of HI (hazard index). No determined TR (target cancer risk) value exceeded the recommended value (<10-4). The study emphasizes the significance of adopting extensive surveillance and monitoring of a large number of shrimp farms for effective antibiotic management and sustainable shrimp production.
Collapse
Affiliation(s)
- M Sohidullah
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md Hamidur Rahman
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Abu Sayeed
- Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Sadia Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Linta Yesmin
- Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh
| | | | - Md Jannat Hossain
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Muhammad Ashiqul Alam
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna 9100, Bangladesh.
| | - Md Salauddin
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md Habibur Rahman
- Department of Oceanography, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md Tazinur Rahman
- Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Sayeed Khaled Sabbir
- Department of Mathematics and Natural Science, Brac University, Dhaka 1212, Bangladesh
| |
Collapse
|
3
|
Cook K, Premchand-Branker S, Nieto-Rosado M, Portal EAR, Li M, Rubio CO, Mathias J, Aziz J, Iregbu K, Afegbua SL, Aliyu A, Mohammed Y, Nwafia I, Oduyebo O, Ibrahim A, Tanko Z, Walsh TR, Achi C, Sands K. Flies as carriers of antimicrobial resistant (AMR) bacteria in Nigerian hospitals: A workflow for surveillance of AMR bacteria carried by arthropod pests in hospital settings. ENVIRONMENT INTERNATIONAL 2025; 196:109294. [PMID: 39862724 DOI: 10.1016/j.envint.2025.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The dissemination of antimicrobial resistant (AMR) bacteria by flies in hospitals is concerning as nosocomial AMR infections pose a significant threat to public health. This threat is compounded in low- and middle-income countries (LMICs) by several factors, including limited resources for sufficient infection prevention and control (IPC) practices and high numbers of flies in tropical climates. In this pilot study, 1,396 flies were collected between August and September 2022 from eight tertiary care hospitals in six cities (Abuja, Enugu, Kaduna, Kano, Lagos and Sokoto) in Nigeria. Flies were screened via microbiological culture and bacterial isolates were phenotypically and genetically characterised to determine carriage of clinically important antibiotic resistance genes (ARGs). Several clinically relevant ARGs were found in bacteria isolated from flies across all hospitals. blaNDM was detected in 8% of flies and was predominantly carried by Providencia spp. alongside clinically relevant Enterobacter spp, Escherichia coli and Klebsiella pneumoniae isolates, which all exhibited a multidrug resistant phenotype. mecA was detected at a prevalence of 6.4%, mostly in coagulase-negative Staphylococci (CoNS) as well as some Staphylococcus aureus, of which 86.8% were multidrug resistant. 40% of flies carried bacteria with at least one of the two ESBL genes tested (blaOXA-1 and blaCTX-M-15). This multi-site study emphasised that flies in hospital settings carry bacteria that are resistant to multiple classes of antibiotics, including both routinely used and reserve antibiotics. A greater understanding of the global clinical significance and burden of AMR attributable to insect pests is required.
Collapse
Affiliation(s)
- Kate Cook
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| | - Shonnette Premchand-Branker
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| | - Maria Nieto-Rosado
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Edward A R Portal
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Mei Li
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Claudia Orbegozo Rubio
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Jordan Mathias
- Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Jawaria Aziz
- Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Kenneth Iregbu
- Department of Medical Microbiology, National Hospital Abuja, Nigeria
| | - Seniyat Larai Afegbua
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria; Department of Biotechnology, Nigerian Defence Academy, Kaduna, Nigeria
| | - Aminu Aliyu
- Department of Medical Microbiology, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Yahaya Mohammed
- Department of Medical Microbiology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria
| | - Ifeyinwa Nwafia
- Department of Medical Microbiology, University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu, Nigeria
| | - Oyinlola Oduyebo
- Department of Medical Microbiology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Abdulrasul Ibrahim
- Department of Medical Microbiology, Ahmadu Bello University, Zaria, Nigeria
| | - Zainab Tanko
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Medicine, Kaduna State University, Kaduna State, Nigeria
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chioma Achi
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Kirsty Sands
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
4
|
Yuan H, Xu J, Wang Y, Shi L, Dong Y, Liu F, Long J, Duan G, Jin Y, Chen S, Zhu J, Yang H. The longitudinal trend and influential factors exploring of global antimicrobial resistance in Klebsiella pneumoniae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175357. [PMID: 39127203 DOI: 10.1016/j.scitotenv.2024.175357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Klebsiella pneumoniae (Kp) is a human symbiotic opportunistic pathogen capable of causing severe hospital-based infections and community-acquired infections. The problem of antimicrobial resistance (AMR) has become increasing serious over time, posing a major threat to socio-economic and human development. In this study, we explored the global trend of AMR in 1786 strains of Kp isolated between 1982 and 2023. The number of antibiotic resistance genes (ARGs) in Kp increased significantly from 24.29 ± 5.44 to 32.42 ± 8.52 over time. Mobile genetic elements (MGEs) were responsible for the ARGs horizontal transfer of Kp strains. The results of structural equation modeling (SEM) indicated a strong association between the human development index and the increase of antibiotic consumption, which indirectly affected the occurrence and development of antibiotic resistance in Kp. The results of Generalized Linear Models (GLM) indicated that the influence of environmental factors such as temperature on the development of Kp resistance could not be ignored. Overall, this study monitored the longitudinal trend of antimicrobial resistance in Kp, explored the factors influencing antibiotic resistance, and provided insights for mitigating the threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Haitao Yuan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Wang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuehan Dong
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyuan Zhu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Rimi SS, Ashraf MN, Sigma SH, Ahammed MT, Siddique MP, Zinnah MA, Rahman MT, Islam MS. Biofilm formation, agr typing and antibiotic resistance pattern in methicillin-resistant Staphylococcus aureus isolated from hospital environments. PLoS One 2024; 19:e0308282. [PMID: 39102390 PMCID: PMC11299820 DOI: 10.1371/journal.pone.0308282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
Biofilm development significantly enhances the virulence of methicillin-resistant Staphylococcus aureus (MRSA), leading to severe infections and decreased susceptibility to antibiotics, especially in strains associated with hospital environments. This study examined the occurrence of MRSA, their ability to form biofilms, agr typing, and the antibiotic resistance profiles of biofilm-forming MRSA strains isolated from environmental surfaces at Mymensingh Medical College Hospital (MMCH). From 120 swab samples, 86 (71.67%) tested positive for S. aureus. MRSA was identified in 86 isolates using the disk diffusion technique, and by polymerase chain reaction (PCR), 56 (65.1%) isolates were confirmed to carry the mecA gene. The Crystal Violet Microtiter Plate (CVMP) test revealed that 80.35% (45 isolates) were biofilm-forming and 19.6% (11 isolates) were non-biofilm-forming. Out of 45 biofilm producer isolates 37.5% and 42.9% isolates exhibited strong and intermediate biofilm-forming characteristics, respectively. Molecular analysis revealed that 17.78% of MRSA isolates carried at least one gene related to biofilm formation, specifically icaA, icaB, and icaD genes were discovered in 13.33%, 8.89%, 6.67% of the MRSA isolates, respectively. In agr typing, the most prevalent group was agr I (71.11%), followed by group III (17.78%) and group II (11.11%). Group IV was not detected. The distribution of agr gene groups showed a significant difference among biofilm-forming isolates (p < 0.05). In agr group I, 18.75% of isolates carried the icaA gene, 12.5% carried the icaB gene, and 9.37% carried the icaD gene. Biofilm-forming genes were not detected in any of the isolates from agr groups II or III. There are no statistically significant differences between agr groups and the presence of these genes (p > 0.05). Antibiotic resistance varied significantly among agr groups, with agr group I displaying the highest resistance, agr group II, and agr group III exhibiting the least resistance (p < 0.05). Seventy-three (73.3%) of the isolates were multi-drug resistant, with agr group I displaying nineteen MDR patterns. The occurrence of MRSA in hospital environments and their capacity to form biofilm raises concerns for public health. These findings support the importance of further research focused on agr quorum sensing systems as a basis for developing novel antibacterial agents.
Collapse
Affiliation(s)
- Sabrina Sultana Rimi
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Nahid Ashraf
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sanzila Hossain Sigma
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Tanjir Ahammed
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Ali Zinnah
- Department of Microbiology and Public Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Shafiqul Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
6
|
Alsaad R. Control study of Musca domestica (Diptera, Muscidae) in Misan Province. F1000Res 2023; 12:459. [PMID: 38106654 PMCID: PMC10721963 DOI: 10.12688/f1000research.132636.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Background Houseflies are the most common type of Diptera, specifically Muscidae, worldwide, representing more than 90% of all species. This family has over 170 genera and 4200 species, but a few are of medical significance. This study aimed to estimate and assessing the measures to control and prevent grow-up inside houses and flying of the housefly ( Musca domestica Linnaeus, 1758) in Misan. Methods The study occurred over 12 months, from December 2020 to December 2021. Using plastic containers, Musca domestica were collected from all potential breeding sites in the study region (inside and around houses). Sticky oil paper and traps were used to collect the insects. The collected insects were transferred to sealed plastic containers and then to the laboratory of the Department of Microbiology.Out of 200 randomly selected houses, 150 (75%) contained insects. Light traps and sticky oil papers were the most effective control measures, with 26.7% and 25.9% of the Musca domestica collected from these methods, respectively. The ratio of male (233) to female (456) Musca was 1:2, with a significant difference between the frequencies (P<0.05). A large population of houseflies was collected during the hot season (501, 72.7%), whereas fewer Musca were collected during the cold months (188, 27.3%), with a strongly significant difference (P<0.05). The percentage of HI was 54.4%, the CI was 21.9%, and the BI was 79.9%. The overall larval densities (LD) were at a medium level. Conclusions Misan has a high density of Musca domestica, with females being more prominent than males. Hot climate, humid sites, and dirty places are responsible for the breeding of houseflies. The overall larval density was medium. Therefore, the risk of transmitting infectious diseases by houseflies is high within the boundaries of Misan province, and effective control parameters should include measures like light traps and sticky oil.
Collapse
Affiliation(s)
- Rasha Alsaad
- Microbiology Department, Faculty of Medicine, Misan University, Misan, 62001, Iraq
| |
Collapse
|
7
|
Olaru ID, Walther B, Schaumburg F. Zoonotic sources and the spread of antimicrobial resistance from the perspective of low and middle-income countries. Infect Dis Poverty 2023; 12:59. [PMID: 37316938 DOI: 10.1186/s40249-023-01113-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Antimicrobial resistance is an increasing challenge in low and middle-income countries as it is widespread in these countries and is linked to an increased mortality. Apart from human and environmental factors, animal-related drivers of antimicrobial resistance in low- and middle-income countries have special features that differ from high-income countries. The aim of this narrative review is to address the zoonotic sources and the spread of antimicrobial resistance from the perspective of low- and middle-income countries. MAIN BODY Contamination with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli is highest in poultry (Africa: 8.9-60%, Asia: 53-93%) and there is a risk to import ESBL-producing E. coli through poultry meat in Africa. In aquacultures, the proportion of ESBL-producers among E. coli can be high (27%) but the overall low quality of published studies limit the general conclusion on the impact of aquacultures on human health. ESBL-producing E. coli colonization of wildlife is 1-9% in bats or 2.5-63% birds. Since most of them are migratory animals, they can disperse antimicrobial resistant bacteria over large distances. So-called 'filth flies' are a relevant vector not only of enteric pathogens but also of antimicrobial resistant bacteria in settings where sanitary systems are poor. In Africa, up to 72.5% of 'filth flies' are colonized with ESBL-producing E. coli, mostly conferred by CTX-M (24.4-100%). While methicillin-resistant Staphylococcus aureus plays a minor role in livestock in Africa, it is frequently found in South America in poultry (27%) or pork (37.5-56.5%) but less common in Asia (poultry: 3%, pork: 1-16%). CONCLUSIONS Interventions to contain the spread of AMR should be tailored to the needs of low- and middle-income countries. These comprise capacity building of diagnostic facilities, surveillance, infection prevention and control in small-scale farming.
Collapse
Affiliation(s)
- Ioana D Olaru
- Institute of Medical Microbiology, University of Münster, Münster, Germany.
| | - Birgit Walther
- Advanced Light and Electron Microscopy, Robert Koch-Institute, Berlin, Germany
- Department of Environmental Hygiene, German Environment Agency, Berlin, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Bertelloni F, Cagnoli G, Bresciani F, Scotti B, Lazzerini L, Marcucci M, Colombani G, Ebani VV. Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies ( Musca domestica) Captured in Swine and Poultry Farms. Antibiotics (Basel) 2023; 12:antibiotics12040636. [PMID: 37106998 PMCID: PMC10135123 DOI: 10.3390/antibiotics12040636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
House flies (Musca domestica) are very diffuse insects attracted by biological materials. They are abundantly present in farm environments and can frequently come in contact with animals, feed, manure, waste, surfaces, and fomites; consequently, these insects could be contaminated, carry, and disperse several microorganisms. The aim of this work was to evaluate the presence of antimicrobial-resistant staphylococci in house flies collected in poultry and swine farms. Thirty-five traps were placed in twenty-two farms; from each trap, 3 different kinds of samples were tested: attractant material present in the traps, the body surface of house flies and the body content of house flies. Staphylococci were detected in 72.72% of farms, 65.71% of traps and 43.81% of samples. Only coagulase-negative staphylococci (CoNS) were isolated, and 49 isolates were subjected to an antimicrobial susceptibility test. Most of the isolates were resistant to amikacin (65.31%), ampicillin (46.94%), rifampicin (44.90%), tetracycline (40.82%) and cefoxitin (40.82%). Minimum Inhibitory concentration assay allowed to confirm 11/49 (22.45%) staphylococci as methicillin-resistant; 4 of them (36.36%) carried the mecA gene. Furthermore, 53.06% of the isolates were classified as multidrug-resistant (MDR). Higher levels of resistance and multidrug resistance were detected in CoNS isolated from flies collected in poultry farms than in swine farms. Therefore, house flies could carry MDR and methicillin-resistant staphylococci, representing a possible source of infection for animals and humans.
Collapse
Affiliation(s)
- Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Flavio Bresciani
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Bruno Scotti
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Versilia, Azienda Usl Toscana Nord Ovest, Via Martiri di S. Anna 12, 55045 Pietrasanta, Italy
| | - Luca Lazzerini
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Versilia, Azienda Usl Toscana Nord Ovest, Via Martiri di S. Anna 12, 55045 Pietrasanta, Italy
| | - Marco Marcucci
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Valle del Serchio, Azienda Usl Toscana Nord Ovest, Via IV Novembre 10, 55027 Gallicano, Italy
| | - Giuseppe Colombani
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Valle del Serchio, Azienda Usl Toscana Nord Ovest, Via IV Novembre 10, 55027 Gallicano, Italy
| | | |
Collapse
|
9
|
Rawat N, Sabu B, Jamwal R, Devi PP, Yadav K, Raina HS, Rajagopal R. Understanding the role of insects in the acquisition and transmission of antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159805. [PMID: 36461578 DOI: 10.1016/j.scitotenv.2022.159805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance (AR) is a global healthcare threat that requires a comprehensive assessment. Poorly regulated antibiotic stewardship in clinical and non-clinical settings has led to a horizontal dissemination of AR. A variety of often neglected elements facilitate the circulation of AR from antibiotic sinks like concentrated animal feeding operations and healthcare settings to other environments that include healthy human communities. Insects are one of those elements that have received underwhelming attention as vectors of AR, despite their well-known role in transmitting clinically relevant pathogens. We here make an exhaustive attempt to highlight the role of insects as zoonotic reservoirs of AR by discussing the available literature and deriving realistic inferences. We review the AR associated with insects housing various human-relevant environments, namely, animal farm industry, edible-insects enterprise, healthcare institutes, human settlements, agriculture settings and the wild. We also provide evidence-based accounts of the events of the transmission of AR from insects to humans. We evaluate the clinical threats associated with insect-derived AR and propose the adoption of more sophisticated strategies to understand and mitigate future AR concerns facilitated by insects. Future works include a pan-region assessment of insects for AR in the form of AR bacteria (ARB) and AR determinants (ARDs) and the introduction of modern techniques like whole-genome sequencing, metagenomics, and in-silico modelling.
Collapse
Affiliation(s)
- Nitish Rawat
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Benoy Sabu
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Rohit Jamwal
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Pukhrambam Pushpa Devi
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Karuna Yadav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India
| | - Harpreet Singh Raina
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India; Department of Zoology, Sri Guru Teg Bahadur Khalsa College, University of Delhi, Delhi 110007, India
| | - Raman Rajagopal
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Room No. 117, Delhi 110007, India.
| |
Collapse
|
10
|
A Systematic Review on the Occurrence of Antimicrobial-Resistant Escherichia coli in Poultry and Poultry Environments in Bangladesh between 2010 and 2021. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2425564. [PMID: 36778056 PMCID: PMC9908353 DOI: 10.1155/2023/2425564] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Antimicrobial resistance (AMR) is a significant public health issue in Bangladesh like many other developing countries where data on resistance trends are scarce. Moreover, the existence of multidrug-resistant (MDR) Escherichia coli exerts an ominous effect on the poultry sector. Therefore, the current systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was conducted to find out the AMR scenarios in E. coli isolates sourced from poultry and poultry environments in Bangladesh between 2010 and 2021. Following the PRISMA guidelines, a total of 17 published scientific articles were selected for this systematic review. This review revealed that 18 out of 64 districts in Bangladesh reported E. coli in poultry, having a higher prevalence (combined prevalence: 69.3%, 95% confidence interval, CI: 67.3-71%). Moreover, the prevalence ranged from 24.3% to 100%. This review found that E. coli isolates showed resistance to 14 antimicrobial classes and 45 different antimicrobial agents, including the last-line (reserve group) antibiotics and banned antimicrobial categories for the treatment of infections in agricultural animals. Phenotypic resistance of E. coli against penicillins and beta-lactamase inhibitors (20.2%-100%), cephalosporins (1.9%-100%), fluoroquinolones (5.98%-100%), aminoglycosides (6%-100%), tetracyclines (17.7%-100%), carbapenems (13.6%-72.7%), macrolides (11.8%-100%), polymyxins (7.9%-100%), phenicols (20%-97.2%), sulfa drugs (44.7%-100%), cephamycins (21.4%-48.8%), nitrofurans (21.4%-63.2%), monobactams (1.2%), and glycylcyclines (2.3%) was recorded in the last decades in Bangladesh. Also, 14 articles reported MDR E. coli in poultry, including a 100% MDR in nine articles and a 92.7% (95% CI: 91.2-94%) combined percentage of MDR E. coli isolates. Twenty-four different AMR genes encoding resistance to beta-lactams (bla TEM, bla CTX-M-1, bla CTX-M-2, bla CTX-M-9, bla OXA-1, bla OXA-47, bla SHV, and CITM), colistin (mcr1 and mcr3), fluoroquinolones (qnrB and qnrS), tetracyclines (tetA, tetB, and tetC), sulfonamides (sulI and sulII), trimethoprim (dfrA1), aminoglycosides (rmtB), streptomycin (aadA1), gentamicin (aac-3-IV), erythromycin (ereA), and chloramphenicol (catA1 and cmlA) were detected in E. coli isolates. The presence of MDR E. coli and their corresponding resistance genes in poultry and poultry environments is an alarming issue for all health communities in Bangladesh. We suggest a regular antimicrobial surveillance program with a strong One Health approach to lessen the hazardous effects of AMR E. coli in poultry industries in Bangladesh.
Collapse
|
11
|
Ballah FM, Islam MS, Rana ML, Ullah MA, Ferdous FB, Neloy FH, Ievy S, Sobur MA, Rahman AMMT, Khatun MM, Rahman M, Rahman MT. Virulence Determinants and Methicillin Resistance in Biofilm-Forming Staphylococcus aureus from Various Food Sources in Bangladesh. Antibiotics (Basel) 2022; 11:antibiotics11111666. [PMID: 36421310 PMCID: PMC9686753 DOI: 10.3390/antibiotics11111666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
The eradication of staphylococcal infections has become more difficult due to the development of antibiotic resistance and virulence in biofilm-forming Staphylococcus aureus. The presence of the life-threatening zoonotic pathogen, methicillin-resistant S. aureus (MRSA), in foods indicates a public health issue. This study, therefore, aimed to determine virulence factors and methicillin resistance in biofilm-forming S. aureus isolates from different foods and food handlers. A total of 100 PCR-positive S. aureus isolates (97 biofilm formers and three non-biofilm formers) were screened using the disk diffusion method and PCR assay. By PCR, genes encoding virulence factors, e.g., enterotoxin (sea, 30%, 95% CI: 21.90−39.59%), toxic shock syndrome toxin (tst, 20%, 95% CI: 13.34−28.88%), and Panton−Valentine leukocidin toxin (PVL, 15%, 95% CI: 9.31−23.28%), were detected in the S. aureus isolates. By the disk diffusion method, 100% (95% CI: 96.30−100.00%) of S. aureus isolates were phenotypically MRSA in nature, showing 100% resistance to oxacillin and cefoxitin. Moreover, the methicillin-resistant gene mecA was found in 61 (61%, 95% CI: 51.20−69.98%) MRSA isolates. Furthermore, all the S. aureus isolates were phenotypically resistant to ampicillin and penicillin, 30% to erythromycin, and 11% to gentamycin. Among them, 51% (95% CI: 41.35−60.58%) of S. aureus isolates were phenotypically multidrug-resistant in nature, and the multiple antibiotic resistance index varied from 0.33 to 0.55. Genes encoding resistance to beta-lactams (blaZ, 100%, 95% CI: 96.30−100.00%) and tetracyclines (tetA and tetC, 3%, 95% CI: 0.82−8.45%) were found positive in the S. aureus isolates. Genes encoding virulence determinants and MRSA were significantly (p < 0.05) higher in strong biofilm-forming S. aureus than in moderate and non-biofilm-forming isolates. To our knowledge, this is the first study in Bangladesh to incorporate preliminary data on the occurrence of virulence determinants and methicillin resistance, including resistance to clinically important antibiotics, in biofilm-forming S. aureus isolates from different foods and food handlers in Bangladesh, emphasizing a potential threat to human health.
Collapse
Affiliation(s)
- Fatimah Muhammad Ballah
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University, Sokoto 840004, Nigeria
| | - Md. Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Liton Rana
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Ashek Ullah
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Farhana Binte Ferdous
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Fahim Haque Neloy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samina Ievy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | | | - Mst. Minara Khatun
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marzia Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence:
| |
Collapse
|
12
|
Ballah FM, Islam MS, Rana ML, Ferdous FB, Ahmed R, Pramanik PK, Karmoker J, Ievy S, Sobur MA, Siddique MP, Khatun MM, Rahman M, Rahman MT. Phenotypic and Genotypic Detection of Biofilm-Forming Staphylococcus aureus from Different Food Sources in Bangladesh. BIOLOGY 2022; 11:biology11070949. [PMID: 36101330 PMCID: PMC9311614 DOI: 10.3390/biology11070949] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus is a major foodborne pathogen. The ability of S. aureus to produce biofilm is a significant virulence factor, triggering its persistence in hostile environments. In this study, we screened a total of 420 different food samples and human hand swabs to detect S. aureus and to determine their biofilm formation ability. Samples analyzed were meat, milk, eggs, fish, fast foods, and hand swabs. S. aureus were detected by culturing, staining, biochemical, and PCR. Biofilm formation ability was determined by Congo Red Agar (CRA) plate and Crystal Violet Microtiter Plate (CVMP) tests. The icaA, icaB, icaC, icaD, and bap genes involved in the synthesis of biofilm-forming intracellular adhesion compounds were detected by PCR. About 23.81% (100/420; 95% CI: 14.17−29.98%) of the samples harbored S. aureus, as revealed by detection of the nuc gene. The CRA plate test revealed 20% of S. aureus isolates as strong biofilm producers and 69% and 11% as intermediate and non-biofilm producers, respectively. By the CVMP staining method, 20%, 77%, and 3% of the isolates were found to be strong, intermediate, and non-biofilm producers. Furthermore, 21% of S. aureus isolates carried at least one biofilm-forming gene, where icaA, icaB, icaC, icaD, and bap genes were detected in 15%, 20%, 7%, 20%, and 10% of the S. aureus isolates, respectively. Bivariate analysis showed highly significant correlations (p < 0.001) between any of the two adhesion genes of S. aureus isolates. To the best of our knowledge, this is the first study in Bangladesh describing the detection of biofilm-forming S. aureus from foods and hand swabs using molecular-based evidence. Our findings suggest that food samples should be deemed a potential reservoir of biofilm-forming S. aureus, which indicates a potential public health significance.
Collapse
|