1
|
Mahajan RR, Ravi PR, Jadhav S, Pansuriya PK, Naik BG, Anture SH, Szeleszczuk Ł. Oral Administration of Neratinib Maleate-Loaded Lipid-Polymer Hybrid Nanoparticles: Optimization, Physical Characterization, and In Vivo Evaluation. Pharmaceutics 2025; 17:221. [PMID: 40006588 PMCID: PMC11858839 DOI: 10.3390/pharmaceutics17020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Neratinib maleate (NM), a tyrosine kinase inhibitor, is used in the treatment of breast cancer. Current oral therapy of NM suffers from low and variable bioavailability due to the solubility and permeability-related issues of the drug. To overcome the low oral bioavailability, the drug is recommended to be administered at high doses, causing severe gastrointestinal side effects leading to discontinuation of the drug therapy. Methods: In this work, NM-loaded lipid-polymer hybrid nanoparticles (NM-LPNs) were designed and optimized to improve the oral bioavailability of the drug. A systematic approach involving a screening design followed by an optimization design based on the principles of design of experiments (DoE) was used to prepare NM-LPNs. Minimum particle size (PS) ranging between 200 and 300 nm and maximum drug loading (DL (%)) were set as the target physicochemical properties. The optimized NM-LPNs, with a mean PS of 278.57 ± 21.16 nm and a DL (%) of 25.77 ± 1.11%, were further characterized for physicochemical properties, thermal and diffractometric analysis, stability, in vitro drug release, and oral pharmacokinetic studies. Results: The nanoparticles exhibited a burst release followed by a prolonged release up to 12 h in the in vitro drug release studies in pH 6.8 media. Conclusions: The mean Cmax and the AUClast values were found to increase significantly for NM-LPNs by 1.72 times (p < 0.01) and 1.58 times (p < 0.01), respectively, when compared to plain NM in the oral pharmacokinetic studies. The optimized NM-LPN formulation can reduce the oral dose of NM and, thereby, its dose-dependent side effects.
Collapse
Affiliation(s)
- Radhika Rajiv Mahajan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (S.J.); (P.K.P.); (B.G.N.); (S.H.A.)
| | - Punna Rao Ravi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (S.J.); (P.K.P.); (B.G.N.); (S.H.A.)
| | - Sakshi Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (S.J.); (P.K.P.); (B.G.N.); (S.H.A.)
| | - Prinsi Kishorbhai Pansuriya
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (S.J.); (P.K.P.); (B.G.N.); (S.H.A.)
| | - Bhushan Gopalsing Naik
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (S.J.); (P.K.P.); (B.G.N.); (S.H.A.)
| | - Shalaka Hanmant Anture
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (S.J.); (P.K.P.); (B.G.N.); (S.H.A.)
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland;
| |
Collapse
|
2
|
Mahajan RR, Ravi PR, Marathe RK, Dongare AG, Prabhu AV, Szeleszczuk Ł. Design and Evaluation of Clove Oil-Based Self-Emulsifying Drug Delivery Systems for Improving the Oral Bioavailability of Neratinib Maleate. Pharmaceutics 2024; 16:1087. [PMID: 39204432 PMCID: PMC11358973 DOI: 10.3390/pharmaceutics16081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Neratinib maleate (NM), a tyrosine kinase inhibitor, is used in the treatment of breast cancer. NM is orally administered at a high dose of 290 mg due to its low solubility and poor dissolution rate at pH > 3, as well as gut-wall metabolism limiting its bioavailability. Self-emulsifying drug delivery systems (SEDDSs) of NM were developed in the current study to improve its oral bioavailability. The oily vehicle (clove oil) was selected based on the solubility of NM, while the surfactant and the cosurfactant were selected based on the turbidimetric analysis. Three different sets were screened for surfactant selection in the preparation of SEDDS formulations, the first set containing Cremophor® EL alone as the surfactant, the second set containing a mixture of Cremophor® EL (surfactant) and Caproyl® PGMC (cosurfactant), and the third set containing a mixture of Cremophor® EL (surfactant) and Capmul® MCM C8 (cosurfactant). Propylene glycol was used as the cosolubilizer in the preparation of SEDDSs. A series of studies, including the construction of ternary phase diagrams to determine the zone of emulsification, thermodynamic stability studies (involving dilution studies, freeze-thaw, and heating-cooling studies), turbidimetric analysis, and physicochemical characterization studies were conducted to identify the two most stable combinations of SEDDSs. The two optimized SEDDS formulations, TP16 and TP25, consisted of clove oil (45% w/w) and propylene glycol (5% w/w) in common but differed with respect to the surfactant or surfactant mixture in the formulations. TP16 was prepared using a mixture of Cremophor® EL (surfactant) and Caproyl® PGMC (cosurfactant) in a 4:1 ratio (50% w/w), while TP25 contained only Cremophor® EL (50% w/w). The mean globule sizes were 239.8 ± 77.8 nm and 204.8 ± 2.4 nm for TP16 and TP25, respectively, with an emulsification time of <12 s for both formulations. In vitro drug dissolution studies performed at different pH conditions (3.0, 4.5, 6.8) have confirmed the increase in solubility and dissolution rate of the drug by TP16 and TP25 at all pH conditions compared to plain NM. An oral pharmacokinetic study in female Wistar rats showed that the relative bioavailability (Frel) values of TP16 and TP25 over the plain NM were 2.18 (p < 0.05) and 2.24 (p < 0.01), respectively.
Collapse
Affiliation(s)
- Radhika Rajiv Mahajan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Punna Rao Ravi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Riya Kamlesh Marathe
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Ajay Gorakh Dongare
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Apoorva Vinayak Prabhu
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland;
| |
Collapse
|
3
|
Hani U, Rahamathulla M, Osmani RAM, Begum M, Wahab S, Ghazwani M, Fatease AA, Alamri AH, Gowda DV, Alqahtani A. Development and Characterization of Oral Raft Forming In Situ Gelling System of Neratinib Anticancer Drug Using 32 Factorial Design. Polymers (Basel) 2022; 14:polym14132520. [PMID: 35808569 PMCID: PMC9269124 DOI: 10.3390/polym14132520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/19/2022] Open
Abstract
Neratinib (NTB) is an irreversible inhibitor of pan-human epidermal growth factor receptor (HER-2) tyrosine kinase and is used in the treatment of breast cancer. It is a poorly aqueous soluble drug and exhibits extremely low oral bioavailability at higher pH, leading to a diminishing of the therapeutic effects in the GIT. The main objective of the research was to formulate an oral raft-forming in situ gelling system of NTB to improve gastric retention and drug release in a controlled manner and remain floating in the stomach for a prolonged time. In this study, NTB solubility was enhanced by polyethylene glycol (PEG)-based solid dispersions (SDs), and an in situ gelling system was developed and optimized by a two-factor at three-level (32) factorial design. It was analyzed to study the impact of two independent variables viz sodium alginate [A] and HPMC K4M [B] on the responses, such as floating lag time, percentage (%) water uptake at 2 h, and % drug release at 6 h and 12 h. Among various SDs prepared using PEG 6000, formulation 1:3 showed the highest drug solubility. FT-IR spectra revealed no interactions between the drug and the polymer. The percentage of drug content in NTB SDs ranged from 96.22 ± 1.67% to 97.70 ± 1.89%. The developed in situ gel formulations exhibited a pH value of approximately 7. An in vitro gelation study of the in situ gel formulation showed immediate gelation and was retained for a longer period. From the obtained results of 32 factorial designs, it was observed that all the selected factors had a significant effect on the chosen response, supporting the precision of design employed for optimization. Thus, the developed oral raft-forming in situ gelling system of NTB can be a promising and alternate approach to enhance retention in the stomach and to attain sustained release of drug by floating, thereby augmenting the therapeutic efficacy of NTB.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (M.R.); (M.Y.B.); (M.G.); (A.A.F.); (A.H.A.)
- Correspondence: ; Tel.: +96-65-9580-4187
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (M.R.); (M.Y.B.); (M.G.); (A.A.F.); (A.H.A.)
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), S.S. Nagara, Mysuru 570015, Karnataka, India; (R.A.M.O.); (D.V.G.)
| | - M.Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (M.R.); (M.Y.B.); (M.G.); (A.A.F.); (A.H.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (M.R.); (M.Y.B.); (M.G.); (A.A.F.); (A.H.A.)
- Cancer Research Unit, King Khalid University, Abha 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (M.R.); (M.Y.B.); (M.G.); (A.A.F.); (A.H.A.)
| | - Ali H. Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia; (M.R.); (M.Y.B.); (M.G.); (A.A.F.); (A.H.A.)
| | - Devegowda V. Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), S.S. Nagara, Mysuru 570015, Karnataka, India; (R.A.M.O.); (D.V.G.)
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| |
Collapse
|
4
|
Rahamathulla M, Saisivam S, Alshetaili A, Hani U, Gangadharappa HV, Alshehri S, Ghoneim MM, Shakeel F. Design and Evaluation of Losartan Potassium Effervescent Floating Matrix Tablets: In Vivo X-ray Imaging and Pharmacokinetic Studies in Albino Rabbits. Polymers (Basel) 2021; 13:3476. [PMID: 34685235 PMCID: PMC8538939 DOI: 10.3390/polym13203476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
Losartan potassium (LP) is an angiotensin receptor blocker used to treat hypertension. At higher pH, it shows poor aqueous solubility, which leads to poor bioavailability and lowers its therapeutic effectiveness. The main aim of this research was to develop a direct compressed effervescent floating matrix tablet (EFMT) of LP using hydroxyl propyl methylcellulose 90SH 15,000 (HPMC-90SH 15,000), karaya gum (KG), and an effervescent agent, such as sodium bicarbonate (SB). Therefore, an EFMT has been developed to prolong the stomach residence time (GRT) of a drug to several hours and improve its bioavailability in the stomach region. The blended powder was evaluated for pre-compression characteristics, followed by post-compression characteristics, in vitro floating, water uptake studies, and in vitro studies. The optimized formulation of EFMT was investigated for in vivo buoyancy by X-ray imaging and pharmacokinetic studies in Albino rabbits. The results revealed that the parameters of pre- and post-compression were within the USP limits. All tablets showed good floating capabilities (short floating lag time <1 min and floated for >24 h), good swelling characteristics, and controlled release for over 24 h. The Fourier-transform infrared (FTIR) and differential scanning calorimetry (DSC) spectra showed drug-polymer compatibility. The optimized formulation F3 (HPMC-90SH 15,000-KG) exhibited non-Fickian diffusion and showed 100% drug release at the end of 24 h. In addition, with the optimized formulation F3, we observed that the EFMT floated continuously in the rabbit's stomach area; thus, the GRT could be extended to more than 12 h. The pharmacokinetic profiling in Albino rabbits revealed that the relative bioavailability of the optimized LP-EFMT was enhanced compared to an oral solution of LP. We conclude that this a potential method for improving the oral bioavailability of LP to treat hypertension effectively.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Srinivasan Saisivam
- Department of Pharmaceutics, N.R. Vikaria Institute of Pharmacy, Junegad 362001, Gujrat, India;
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | | | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| |
Collapse
|