1
|
Mobaleghol Eslam H, Hataminia F, Esmaeili F, Salami SA, Ghanbari H, Amani A. Preparation of a nanoemulsion containing active ingredients of cannabis extract and its application for glioblastoma: in vitro and in vivo studies. BMC Pharmacol Toxicol 2024; 25:73. [PMID: 39375818 PMCID: PMC11460059 DOI: 10.1186/s40360-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Recently, the anti-tumor effects of cannabis extract on various cancers have attracted the attention of researchers. Here, we report a nanoemulsion (NE) composition designed to enhance the delivery of two active components in cannabis extracts (∆9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD)) in an animal model of glioblastoma. The efficacy of the NE containing the two drugs (NED) was compared with the bulk drugs and carrier (NE without the drugs) using the C6 tumor model in rats. Hemocompatibility factors (RBC, MCV, MCH, MCHC, RDW, PPP, PT and PTT) were studied to determine the potential in vivo toxicity of NED. The optimized NED with mean ± SD diameter 29 ± 6 nm was obtained. It was shown that by administering the drugs in the form of NED, the hemocompatibility increased. Cytotoxicity studies indicated that the NE without the active components (i.e. mixture of surfactants and oil) was the most cytotoxic group, while the bulk group had no toxicity. From the in vivo MRI and survival studies, the NED group had maximum efficacy (with ~4 times smaller tumor volume on day 7 of treatment, compared with the control. Also, survival time of the control, bulk drug, NE and NED were 9, 4, 12.5 and 51 days, respectively) with no important adverse effects. In conclusion, the NE containing cannabis extract could be introduced as an effective treatment in reducing brain glioblastoma tumor progression.
Collapse
Affiliation(s)
- Houra Mobaleghol Eslam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hataminia
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Salami
- Department of Biotechnology, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
- Industrial and Medical Cannabis Research Institute (IMCRI), Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
2
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Yousefpoor Y, Esnaashari SS, Baharifar H, Mehrabi M, Amani A. Current challenges ahead in preparation, characterization, and pharmaceutical applications of nanoemulsions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1920. [PMID: 37558229 DOI: 10.1002/wnan.1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023]
Abstract
Nanoemulsions (NEs) are emulsions with particle size of less than around 100 nm. Reviewing the literature, several reports are available on NEs, including preparation, characterization, and applications of them. This review aims to brief challenges that researchers or formulators may encounter when working with NEs. For instance, when selecting NE components and identifying their concentrations, stability and safety of the preparation should be evaluated. When preparing an NE, issues over scale-up of the preparation as well as possible effects of the preparation process on the active ingredient need to be considered. When characterizing the NEs, the two major concerns are accuracy of the method and accessibility of the characterizing instrument. Also a highly efficient NE for clinical use to deliver the active ingredient to the target tissue with maximum safety profile is commonly sought. Throughout the review we also have tried to suggest approaches to overcome the challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yaser Yousefpoor
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical, Torbat Heydariyeh, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
4
|
Solid lipid nanoparticles dispersed topical hydrogel for Co-delivery of adapalene and minocycline for acne treatment. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation. Gels 2022; 8:gels8070456. [PMID: 35877541 PMCID: PMC9316521 DOI: 10.3390/gels8070456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aims to design and develop a nanoemulgel formulation of Tamoxifen citrate (TAM), a water-insoluble, potent anticancer drug, using the spontaneous emulsification method to improve topical delivery, achieve high accumulation at the tumour site, and spare the healthy tissues. The oil-based selection was related to the TAM solubility, while the surfactant and co-surfactant were chosen based on the droplets’ thermodynamic stability and size. Afterwards, a pseudo-ternary phase diagram was built for the most promising formulation using two oils, olive and sesame, with a varied mix of Tween 40 as the surfactant and Trascutol HP as the co-surfactant (Smix), by the optimisation of experiments. The nanoemulsion (NE) formulations that were prepared were found to have an average droplet size of 41.77 ± 1.23 nm and 188.37 ± 3.53 nm, with suitable thermodynamic stability and physicochemical properties. Both olive and sesame oils are natural food additives due to their associated antioxidant effects; therefore, they showed no toxicity profile on breast cell lines (MCF-7, ATCC number HTB-22). The TAM-NE preparations revealed a prolonged and doublings superior cumulative percentage of in vitro release of TAM compared to TAM plain gel suspension over 24 h. The release data suggested that the Higuchi model was the best fitting kinetical model for the developed formulations of NE1, NE9, and NE18. The extended release of the drug as well as an acceptable amount of the drug permeated TAM via nanogel preparations suggested that nanoemulgel (NEG) is suitable for the topical delivery of TAM in breast cancer management. Thus, this work suggests that a nanogel of TAM can improve anticancer properties and reduce systemic adverse effects compared to a suspension preparation of TAM when applied in the treatment of breast cancer.
Collapse
|
6
|
Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering (Basel) 2022; 9:bioengineering9040158. [PMID: 35447718 PMCID: PMC9028917 DOI: 10.3390/bioengineering9040158] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Microemulsions and nanoemulsions are lipid-based pharmaceutical systems with a high potential to increase the permeation of drugs through the skin. Although being isotropic dispersions of two nonmiscible liquids (oil and water), significant differences are encountered between microemulsions and nanoemulsions. Microemulsions are thermodynamically stable o/w emulsions of mean droplet size approximately 100–400 nm, whereas nanoemulsions are thermodynamically unstable o/w emulsions of mean droplet size approximately 1 to 100 nm. Their inner oil phase allows the solubilization of lipophilic drugs, achieving high encapsulation rates, which are instrumental for drug delivery. In this review, the importance of these systems, the key differences regarding their composition and production processes are discussed. While most of the micro/nanoemulsions on the market are held by the cosmetic industry to enhance the activity of drugs used in skincare products, the development of novel pharmaceutical formulations designed for the topical, dermal and transdermal administration of therapeutic drugs is being considered. The delivery of poorly water-soluble molecules through the skin has shown some advantages over the oral route, since drugs escape from first-pass metabolism; particularly for the treatment of cutaneous diseases, topical delivery should be the preferential route in order to reduce the number of drugs used and potential side-effects, while directing the drugs to the site of action. Thus, nanoemulsions and microemulsions represent versatile options for the delivery of drugs through lipophilic barriers, and many synthetic and natural compounds have been formulated using these delivery systems, aiming to improve stability, delivery and bioactivity. Detailed information is provided concerning the most relevant recent scientific publications reporting the potential of these delivery systems to increase the skin permeability of drugs with anti-inflammatory, sun-protection, anticarcinogenic and/or wound-healing activities. The main marketed skincare products using emulsion-based systems are also presented and discussed.
Collapse
|