1
|
Yao Y, Sun H, Chen Y, Tian L, Huang D, Liu C, Zhou Y, Wang Y, Wen Z, Yang B, Chen X, Pei R. RBM24 inhibits the translation of SARS-CoV-2 polyproteins by targeting the 5'-untranslated region. Antiviral Res 2023; 209:105478. [PMID: 36464077 PMCID: PMC9712144 DOI: 10.1016/j.antiviral.2022.105478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
SARS-CoV-2 is a betacoronavirus with single-stranded positive-sense RNA, which is a serious global threat to human health. Understanding the molecular mechanism of viral replication is crucial for the development of antiviral drugs. The synthesis of viral polyproteins is a crucial step in viral progression. The synthesis of viral polyproteins in coronaviruses is regulated by the 5'-untranslated region (UTR); however, the detailed regulatory mechanism needs further investigation. The present study demonstrated that the RNA binding protein, RBM24, interacts with the RNA genome of SARS-CoV-2 via its RNA recognition submotifs (RNPs). The findings revealed that RBM24 recognizes and binds to the GUGUG element at stem-loop 4 (SL4) in the 5'-UTR of SARS-CoV-2. The interaction between RBM24 and 5'-UTR prevents 80S ribosome assembly, which in turn inhibits polyproteins translation and the replication of SARS-CoV-2. Notably, other RNA viruses, including SARS-CoV, MERS-CoV, Ebolavirus, rhinovirus, West Nile virus, Zika virus, Japanese encephalitis virus, yellow fever virus, hepatitis C virus, and human immunodeficiency virus-1 also contain one or several G(U/C/A)GUG sequences in the 5'-UTR, which is also targeted by RBM24. In conclusion, the present study demonstrated that RBM24 functions by interacting with the 5'-UTR of SARS-CoV-2 RNA, and elucidated that RBM24 could be a host restriction factor for SARS-CoV-2 and other RNA viruses.
Collapse
Affiliation(s)
- Yongxuan Yao
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hao Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingqian Tian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhe Wen
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China
| | - Bo Yang
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China,Corresponding author. Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China,Guangzhou Laboratory, Guangzhou, 510320, China,Corresponding author. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China,Corresponding author
| |
Collapse
|
2
|
Yao Y, Yang B, Cao H, Zhao K, Yuan Y, Chen Y, Zhang Z, Wang Y, Pei R, Chen J, Hu X, Zhou Y, Lu M, Wu C, Chen X. RBM24 stabilizes hepatitis B virus pregenomic RNA but inhibits core protein translation by targeting the terminal redundancy sequence. Emerg Microbes Infect 2018; 7:86. [PMID: 29760415 PMCID: PMC5951808 DOI: 10.1038/s41426-018-0091-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
The terminal redundancy (TR) sequence of the 3.5-kb hepatitis B virus (HBV) RNA contains sites that govern many crucial functions in the viral life cycle, including polyadenylation, translation, RNA packaging, and DNA synthesis. In the present study, RNA-binding motif protein 24 (RBM24) is shown to be involved in the modulation of HBV replication by targeting the TR of HBV RNA. In HBV-transfected hepatoma cell lines, both knockdown and overexpression of RBM24 led to decreased HBV replication and transcription. Ectopic expression of RBM24 inhibited HBV replication, which was partly restored by knockdown of RBM24, indicating that a proper level of RBM24 was required for HBV replication. The regulation of RBM24 of HBV replication and translation was achieved by the interaction between the RNA-binding domains of RBM24 and both the 5' and 3' TR of 3.5-kb RNA. RBM24 interacted with the 5' TR of HBV pregenomic RNA (pgRNA) to block 80S ribosome assembly on HBV pgRNA and thus inhibited core protein translation, whereas the interaction between RBM24 and the 3' TR enhanced the stability of HBV RNA. Finally, the regulatory function of RBM24 on HBV replication was further confirmed in a HBV infection model. In conclusion, the present study demonstrates the dual functions of RBM24 by interacting with different TRs of viral RNA and reveals that RBM24 is an important host gene for HBV replication.
Collapse
Affiliation(s)
- Yongxuan Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huang Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaitao Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
- School of Pharmacy, Anhui Medical University, Hefei, 230022, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Guo J, Chen D, Gao X, Hu X, Zhou Y, Wu C, Wang Y, Chen J, Pei R, Chen X. Protein Inhibitor of Activated STAT2 Restricts HCV Replication by Modulating Viral Proteins Degradation. Viruses 2017; 9:v9100285. [PMID: 28973998 PMCID: PMC5691636 DOI: 10.3390/v9100285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) replication in cells is controlled by many host factors. In this report, we found that protein inhibitor of activated STAT2 (PIAS2), which is a small ubiquitin-like modifier (SUMO) E3 ligase, restricted HCV replication. During infection, HCV core, NS3 and NS5A protein expression, as well as the viral assembly and budding efficiency were enhanced when endogenous PIAS2 was knocked down, whereas exogenous PIAS2 expression decreased HCV core, NS3, and NS5A protein expression and the viral assembly and budding efficiency. PIAS2 did not influence the viral entry, RNA replication, and protein translation steps of the viral life cycle. When expressed together with SUMO1, PIAS2 reduced the HCV core, NS3 and NS5A protein levels expressed from individual plasmids through the proteasome pathway in a ubiquitin-independent manner; the stability of these proteins in the HCV infectious system was enhanced when PIAS2 was knocked down. Furthermore, we found that the core was SUMOylated at amino acid K78, and PIAS2 enhanced the SUMOylation level of the core.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoxiao Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
5
|
Productive HBV infection of well-differentiated, hNTCP-expressing human hepatoma-derived (Huh7) cells. Virol Sin 2017; 32:465-475. [PMID: 28971350 PMCID: PMC6702241 DOI: 10.1007/s12250-017-3983-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Feasible and effective cell models for hepatitis B virus (HBV) infection are required for investigating the complete lifecycle of this virus, including the early steps of viral entry. Resistance to dimethyl sulfoxide/polyethylene glycol (DMSO/PEG), hNTCP expression, and a differentiated state are the limiting factors for successful HBV infection models. In the present study, we used a hepatoma cell line (Huh7DhNTCP) to overcome these limiting factors so that it exhibits excellent susceptibility to HBV infection. To achieve this goal, different hepatoma cell lines were tested with 2.5% DMSO / 4% PEG8000, and one resistant cell line (Huh7D) was used to construct a stable hNTCP-expressing cell line (Huh7DhNTCP) using a recombinant lentivirus system. Then, the morphological characteristics and differentiation molecular markers of Huh7DhNTCP cells with or without DMSO treatment were characterized. Finally, the susceptibility of Huh7DhNTCP cells to HBV infection was assessed. Our results showed that Huh7D cells were resistant to 2.5% DMSO / 4% PEG8000, whereas the others were not. Huh7DhNTCP cells were established to express a high level of hNTCP compared to liver extracts, and Huh7DhNTCP cells rapidly transformed into a non-dividing, well-differentiated polarized phenotype under DMSO treatment. Huh7DhNTCP cells fully supported the entire lifecycle of HBV infection. This cell culture system will be useful for the analysis of host-virus interactions, which should facilitate the discovery of antiviral drugs and vaccines.
Collapse
|