1
|
An Immunohistochemical Study of the PTEN/AKT Pathway Involvement in Canine and Feline Mammary Tumors. Animals (Basel) 2021; 11:ani11020365. [PMID: 33535663 PMCID: PMC7912927 DOI: 10.3390/ani11020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The PTEN/AKT pathway is involved in several human and animal tumors’ pathogenesis. This study investigates the PTEN/AKT pathway’s biological and prognostic values in canine and feline mammary tumors. PTEN, phospho-AKT (p-AKT) and Rictor expression was determined by immunohistochemistry in canine mammary adenomas and carcinomas and feline mammary carcinomas. In mammary tumors of both species p-Akt was inversely correlated with PTEN expression and positively with Rictor expression; p-Akt and Rictor expression correlated with poorer prognosis. This data could provide a rationale for further studies of this pathway in veterinary oncology due to prognostic and therapeutic implications. Abstract Phosphatase and tensin homolog deleted on chromosome10 (PTEN), phospho-v-Akt murine thymoma viral oncogene homolog (AKT), and the Rapamycin-Insensitive Companion of mTOR (Rictor) expression was investigated by immunohistochemistry in 10 canine mammary adenomas (CMAs), 40 canine mammary carcinomas (CMCs), and 30 feline mammary carcinomas (FMCs). All the CMAs, 25 of 40 CMCs (63%) and 7 of 30 FMCs (23%), were PTEN-positive. In dogs, no CMAs and 15 of 25 CMCs (37%) expressed phospho-AKT (p-AKT), while 24 of 30 FMCs (82%) were p-AKT-positive. One of 10 CMAs (10%), 24 of 40 CMCs (60%) and 20 of 30 FMCs (67%) were Rictor-positive. In the dog, PTEN expression correlated with less aggressive tumors, absence of lymphatic invasion, and longer survival. P-AKT expression correlated with more aggressive subtype, lymphatic invasion, and poorer survival and Rictor expression with lymphatic invasion. In cats, PTEN correlated with less aggressive carcinomas, absence of lymphatic invasion, and better survival. P-AKT and Rictor expression correlated with poorer survival. PTEN expression was inversely correlated with p-AKT and Rictor in both species, while p-AKT positively correlated with Rictor expression. A strong PTEN/AKT pathway involvement in behavior worsening of CMT and FMTs is demonstrated, providing a rationale for further studies of this pathway in veterinary oncology.
Collapse
|
2
|
Zhao Q, Zhang Y. Ensemble Method of Feature Selection and Reverse Construction of Gene Logical Network Based on Information Entropy. INT J PATTERN RECOGN 2019. [DOI: 10.1142/s0218001420590041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we propose a novel ensemble gene selection method to obtain a gene subset. Then we provide a reverse construction method of gene network derived from expression profile data of the gene subset. The uncertainty coefficient based on information entropy are used to define the existence of logical relations among these genes. If the uncertainty coefficient between some genes exceeds predefined thresholds, the gene nodes will be connected by directed edges. Thus, a gene network is generated, which we define as gene logical network. This method is applied to the breast cancer data including control group and experimental group, with comparisons of the 2nd-order logic type distribution, average degree as well as average path length of the networks. It is found that these structures with different networks are quite distinct. By the comparison of the degree difference between control group and experimental group, the key genes are picked up. By defining the dynamics evolution rules of state transition based on the logical regulation among the key genes in the network, the dynamic behaviors for normal breast cells and cells with cancer of different stages are simulated numerically. Some of them are highly related to the development of breast cancer through literature inquiry. The study may provide a useful revelation to the biological mechanism in the formation and development of cancer.
Collapse
Affiliation(s)
- Qingfeng Zhao
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
- Shandong Province Key Laboratory of Wisdom Mine Information Technology, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| |
Collapse
|
3
|
Discovery of a small-molecule inhibitor of specific serine residue BAD phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E10505-E10514. [PMID: 30309962 DOI: 10.1073/pnas.1804897115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human BCL-2-associated death promoter (hBAD) is an apoptosis-regulatory protein mediating survival signals to carcinoma cells upon phosphorylation of Ser99, among other residues. Herein, we screened multiple small-molecule databases queried in a Laplacian-modified naive Bayesian-based cheminformatics platform and identified a Petasis reaction product as a site-specific inhibitor for hBAD phosphorylation. Based on apoptotic efficacy against mammary carcinoma cells, N-cyclopentyl-3-((4-(2,3-dichlorophenyl) piperazin-1-yl) (2-hydroxyphenyl) methyl) benzamide (NPB) was identified as a potential lead compound. In vitro biochemical analyses demonstrated that NPB inhibited the phosphorylation of hBAD specifically on Ser99. NPB was observed to exert this effect independently of AKT and other kinase activities despite the demonstration of AKT-mediated BAD-Ser99 phosphorylation. Using a structure-based bioinformatics platform, we observed that NPB exhibited predicted interactions with hBAD in silico and verified the same by direct binding kinetics. NPB reduced phosphorylation of BAD-Ser99 and enhanced caspase 3/7 activity with associated loss of cell viability in various human cancer cell lines derived from mammary, endometrial, ovarian, hepatocellular, colon, prostatic, and pancreatic carcinoma. Furthermore, by use of a xenograft model, it was observed that NPB, as a single agent, markedly diminished BAD phosphorylation in tumor tissue and significantly inhibited tumor growth. Similar doses of NPB utilized in acute toxicity studies in mice did not exhibit significant effects. Hence, we report a site-specific inhibitor of BAD phosphorylation with efficacy in tumor models.
Collapse
|
4
|
|
5
|
Asproni P, Ressel L, Millanta F, Vannozzi I, Poli A. Co-localization of PTEN and E-cadherin in canine mammary hyperplasias and benign and malignant mammary tumors. Res Vet Sci 2015; 103:113-8. [DOI: 10.1016/j.rvsc.2015.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 12/12/2022]
|
6
|
Wang J, Zhang C, Chen K, Tang H, Tang J, Song C, Xie X. ERβ1 inversely correlates with PTEN/PI3K/AKT pathway and predicts a favorable prognosis in triple-negative breast cancer. Breast Cancer Res Treat 2015; 152:255-69. [PMID: 26070269 DOI: 10.1007/s10549-015-3467-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/09/2015] [Indexed: 02/06/2023]
Abstract
In contrast to the well-established role of estrogen receptor alpha (ERα) in breast cancer, the significance of estrogen receptor beta (ERβ) remains controversial, especially in triple-negative breast cancer (TNBC). We sought to investigate the clinical importance of wild-type ERβ (ERβ1) in TNBC based on a large population, and to explore the potential molecular pathways involved in. A total of 571 patients with invasive TNBC undergoing curative surgery were included in this study. Immunohistochemical staining for ERβ1, pAKT, PTEN, pERK, β-catenin, EGFR, p53, and E-cadherin was performed on tissue microarrays. Prognostic determinants for overall survival (OS) and disease-free survival (DFS), as well as the risk factors for distant metastasis-free survival (DMFS) and locoregional recurrence-free survival, were evaluated in univariate and multivariate analyses. Overexpression of ERβ1 was detected in 30.4% of tumor samples. Patients with ERβ1 tended to be postmenopausal, and less likely to develop lymphatic metastasis. Multivariate analysis demonstrated that ERβ1 predicted a better OS, DFS, and DMFS independently. Regarding other biomarkers, only pAKT was identified as an independent negative predictor for survival. Additionally, ERβ1 expression was inversely associated with pAKT and the loss of PTEN. Notably, further survival analysis according to status of ERβ1/pAKT indicated that ERβ1(+)/pAKT(-) predicted the most favorable prognosis for TNBC. On the contrary, ERβ1(-)/pAKT(+) was associated with the worst outcomes. In summary, our findings indicate that ERβ1 independently predicts a better prognosis for TNBC and potentially interacts with the PTEN/PI3K/pAKT pathway. The role of ERβ1-specific agonists combined with the inhibitors of pAKT merits further investigation.
Collapse
Affiliation(s)
- Jin Wang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China,
| | | | | | | | | | | | | |
Collapse
|
7
|
Chu SH, Zhou ZM, Karri S, Li ZQ, Zhao JM. In vitro and in vivo radiosensitization of human glioma U251 cells induced by upregulated expression of SLC22A18. Cancer Gene Ther 2014; 21:103-109. [PMID: 24481489 DOI: 10.1038/cgt.2014.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/01/2014] [Accepted: 01/10/2014] [Indexed: 01/08/2023]
Abstract
Our previous study showed that solute carrier family 22 (organic cation transporter) member 18 (SLC22A18) downregulation via promoter methylation was associated with the development and progression of glioma, and the elevated expression of SLC22A18 was found to increase the sensitivity of glioma U251 cells to the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea. In this study, we investigated the possible upregulated expression of SLC22A18-induced enhancement of radiosensitivity of human glioma U251 cells in order to provide evidence in support of further clinical investigations. Stably overexpressing SLC22A18 human glioma U251 cells were generated to investigate the effect of SLC22A18 on the sensitivity of cells to irradiation in vitro using clonogenic survival assay. The apoptosis of U251 cells was examined with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. DNA damage and repair were measured using γH2AX foci. The effect of SLC22A18 on the in vivo tumor radiosensitivity was investigated in the orthotopic mice model. Upregulated expression of SLC22A18 enhanced the radiosensitivity of glioma U251 cells and also enhanced irradiation-induced apoptosis of U251 cells, but irradiation-induced apoptosis did not correlate with radiosensitizing effect of upregulated expression of SLC22A18. The repair of irradiation-induced double-strand-breaks was retarded in stably overexpressing SLC22A18 U251 cells. In the orthotopic mice model, the upregulated expression of SLC22A18 in U251 cells enhanced the effect of irradiation treatment and increased the survival time of mice. These results show that upregulated expression of SLC22A18 radiosensitizes human glioma U251 cells by suppressing DNA repair capacity.
Collapse
Affiliation(s)
- S-H Chu
- Department of Neurosurgery, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Z-M Zhou
- Department of Neurosurgery, Dujiangyan Medical Center, Chengdu, China
| | - S Karri
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Z-Q Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - J-M Zhao
- Department of Radiology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Jiang L, Luo M, Liu D, Chen B, Zhang W, Mai L, Zeng J, Huang N, Huang Y, Mo X, Li W. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer. Cancer Cell Int 2013; 13:53. [PMID: 23725574 PMCID: PMC3674892 DOI: 10.1186/1475-2867-13-53] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/27/2013] [Indexed: 02/05/2023] Open
Abstract
Background The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Methods Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Results Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Conclusions Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.
Collapse
Affiliation(s)
- Li Jiang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China.,Department of Respiratory Medicine, Nanchong Central Hospital, Nanchong 637000, P.R China
| | - Man Luo
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Dan Liu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Bojiang Chen
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Wen Zhang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Lin Mai
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Jing Zeng
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Na Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, P.R China
| | - Yi Huang
- Clinical Laboratory Department, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P.R China
| | - Xianming Mo
- Laboratory Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Weimin Li
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| |
Collapse
|
9
|
Maniscalco L, Iussich S, Martín de las Mulas J, Millán Y, Biolatti B, Sasaki N, Nakagawa T, De Maria R. Activation of AKT in feline mammary carcinoma: A new prognostic factor for feline mammary tumours. Vet J 2012; 191:65-71. [DOI: 10.1016/j.tvjl.2010.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 02/05/2023]
|
10
|
Huang Y, Liu D, Chen B, Zeng J, Wang L, Zhang S, Mo X, Li W. Loss of Bad expression confers poor prognosis in non-small cell lung cancer. Med Oncol 2011; 29:1648-55. [DOI: 10.1007/s12032-011-0060-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 12/16/2022]
|
11
|
|