1
|
Wang T, Jin Y, Wang M, Chen B, Sun J, Zhang J, Yang H, Deng X, Cao X, Wang L, Tang Y. SALL4 in gastrointestinal tract cancers: upstream and downstream regulatory mechanisms. Mol Med 2024; 30:46. [PMID: 38584262 PMCID: PMC11000312 DOI: 10.1186/s10020-024-00812-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Effective therapeutic targets and early diagnosis are major challenges in the treatment of gastrointestinal tract (GIT) cancers. SALL4 is a well-known transcription factor that is involved in organogenesis during embryonic development. Previous studies have revealed that SALL4 regulates cell proliferation, survival, and migration and maintains stem cell function in mature cells. Additionally, SALL4 overexpression is associated with tumorigenesis. Despite its characterization as a biomarker in various cancers, the role of SALL4 in GIT cancers and the underlying mechanisms are unclear. We describe the functions of SALL4 in GIT cancers and discuss its upstream/downstream genes and pathways associated with each cancer. We also consider the possibility of targeting these genes or pathways as potential therapeutic options for GIT cancers.
Collapse
Affiliation(s)
- Tairan Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yan Jin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mengyao Wang
- First Clinical Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Boya Chen
- First Clinical Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinyu Sun
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiaying Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinyao Deng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xingyue Cao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Hashemi-Khah MS, Arbab-Soleimani N, Forghanifard MM, Gholami O, Taheri S, Amoueian S. An In Vivo Study of Lactobacillus rhamnosus (PTCC 1637) as a New Therapeutic Candidate in Esophageal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7607470. [PMID: 35782061 PMCID: PMC9249511 DOI: 10.1155/2022/7607470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Objective This study is aimed at investigating the effect of probiotic Lactobacillus rhamnosus on esophageal cancer in vivo and in vitro. Methods and Results In this study, the cytotoxicity effects of L. rhamnosus supernatant and whole-cell culture on a cancer cell line (Kyse30) compared to 5fu were evaluated by the MTT assay. The real-time PCR method was used to analyse the L. rhamnosus supernatant effect on the expression of Wnt signaling pathway genes. An in vivo investigation in nude mice was done to assess the anti-tumor activity of L. rhamnosus supernatant and whole-cell culture. Both supernatant and whole-cell culture of L. rhamnosus reduced cell survival (Kyse30) P < 0.001. The supernatant of this bacterium significantly reduced the expression of Wnt signaling pathway genes. Administration of supernatant and whole-cell culture of L. rhamnosus expressively reduced tumor growth compared to the control group. The effects of this bacterium on tumor necrosis were quite evident, pathologically P < 0.01. Conclusion This study is the first report that assessed the potential impact of L. rhamnosus, especially its supernatant on esophageal cancer and Wnt signaling pathway genes. Therefore, this bacterium can be a harmless candidate for esophageal cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Saba Taheri
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Sakineh Amoueian
- Pathology Department, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Integrative network-based approaches identified systems-level molecular signatures associated with gallbladder cancer pathogenesis from gallstone diseases. J Biosci 2022. [DOI: 10.1007/s12038-022-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Chi X, Ji T, Li J, Xu J, Tang X, Xie L, Meng F, Guo W. Genomic Analysis Revealed Mutational Traits Associated with Clinical Outcomes in Osteosarcoma. Cancer Manag Res 2021; 13:5101-5111. [PMID: 34234554 PMCID: PMC8254031 DOI: 10.2147/cmar.s317809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/01/2022] Open
Abstract
Objective The limited understanding of correlation between genomic features and biological behaviors has impeded the therapeutic breakthrough in osteosarcoma (OS). This study aimed to reveal the correlation of mutational and evolutionary traits with clinical outcomes. Methods We applied a case-based targeted and whole exome sequencing of eleven matched primary, recurrent and metastatic samples from three OS patients characterized by different clinical behaviors in local recurrence or systematic progression pattern. Results Extensive OS-associated driver genes were detected including TP53, RB1, NF1, PTEN, SPEN, CDKN2A. Oncogenic signaling pathways including cell cycle, TP53, MYC, Notch, WNT, RTK-RAS and PI3K were determined. MYC amplification was observed in the patient with shortest disease-free interval. Linear, branched or mixed evolutionary models were constructed in the three OS cases. A branched evolution with limited root mutation was detected in patient with shorter survival interval. ADAM17 mutation and HEY1 amplification were identified in OS happening dedifferentiation. Signatures 21 associated with microsatellite instability (MSI) was identified in OS patient with extra-pulmonary metastases. Conclusion OS was characterized by complex genomic alterations. MYC aberration, limited root mutations, and a branched evolutionary model were observed in OS patient with relatively aggressive course. Extra-pulmonary metastases of OS might attribute to distinct mutational process pertaining to MSI. Further research in a larger number of people is needed to confirm these findings.
Collapse
Affiliation(s)
- Xiying Chi
- Musculoskeletal Tumor Center, Peking University, People's Hospital, Beijing, 100044, People's Republic of China
| | - Tao Ji
- Musculoskeletal Tumor Center, Peking University, People's Hospital, Beijing, 100044, People's Republic of China
| | - Junying Li
- Department of Medicine, OrigiMed, Shanghai, 201114, People's Republic of China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University, People's Hospital, Beijing, 100044, People's Republic of China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University, People's Hospital, Beijing, 100044, People's Republic of China
| | - Lu Xie
- Musculoskeletal Tumor Center, Peking University, People's Hospital, Beijing, 100044, People's Republic of China
| | - Fanfei Meng
- Department of Medicine, OrigiMed, Shanghai, 201114, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University, People's Hospital, Beijing, 100044, People's Republic of China
| |
Collapse
|
5
|
Mutational processes in cancer preferentially affect binding of particular transcription factors. Sci Rep 2021; 11:3339. [PMID: 33558557 PMCID: PMC7870974 DOI: 10.1038/s41598-021-82910-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Protein binding microarrays provide comprehensive information about the DNA binding specificities of transcription factors (TFs), and can be used to quantitatively predict the effects of DNA sequence variation on TF binding. There has also been substantial progress in dissecting the patterns of mutations, i.e., the "mutational signatures", generated by different mutational processes. By combining these two layers of information we can investigate whether certain mutational processes tend to preferentially affect binding of particular classes of TFs. Such preferential alterations of binding might predispose to particular oncogenic pathways. We developed and implemented a method, termed "Signature-QBiC", that integrates protein binding microarray data with the signatures of mutational processes, with the aim of predicting which TFs’ binding profiles are preferentially perturbed by particular mutational processes. We used Signature-QBiC to predict the effects of 47 signatures of mutational processes on 582 human TFs. Pathway analysis showed that binding of TFs involved in NOTCH1 signaling is strongly affected by the signatures of several mutational processes, including exposure to ultraviolet radiation. Additionally, toll-like-receptor signaling pathways are also vulnerable to disruption by this exposure. This study provides a novel overview of the effects of mutational processes on TF binding and the potential of these processes to activate oncogenic pathways through mutating TF binding sites.
Collapse
|
6
|
Fukusumi T, Guo TW, Ren S, Haft S, Liu C, Sakai A, Ando M, Saito Y, Sadat S, Califano JA. Reciprocal activation of HEY1 and NOTCH4 under SOX2 control promotes EMT in head and neck squamous cell carcinoma. Int J Oncol 2020; 58:226-237. [PMID: 33491747 PMCID: PMC7864008 DOI: 10.3892/ijo.2020.5156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Several comprehensive studies have demonstrated that the NOTCH pathway is altered in a bimodal manner in head and neck squamous cell carcinoma (HNSCC). In a previous study, it was found that the NOTCH4/HEY1 pathway was specifically upregulated in HNSCC and promoted epithelial-mesenchymal transition (EMT), and that HEY1 activation supported SOX2 expression. However, the interactions in this pathway have not yet been fully elucidated. The present study investigated the NOTCH4/HEY1/SOX2 axis in HNSCC using in vitro models and the Cancer Genome Atlas (TCGA) database. To explore the association, reporter and ChIP RT-qPCR assays using SOX2-overexpressing (SOX2-OE) cells were performed. The association between NOTCH4 and HEY1 was examined in the same manner using HEY1-overexpressing (HEY1-OE) cells. The results of the in vitro experiments indicated that HEY1 promoted EMT in the HNSCC cells. Furthermore, the overexpression of HEY1 also promoted sphere formation and increased murine xenograft tumorigenicity. Reporter assays and ChIP RT-qPCR experiments indicated that SOX2 regulated HEY1 expression via direct binding of the HEY1 promoter. HEY1 expression significantly correlated with SOX2 expression in primary lung SCC and other SCCs using the TCGA database. HEY1 also regulated NOTCH4 expression to create a positive reciprocal feedback loop. On the whole, the present study demonstrates that HEY1 expression in HNSCC is regulated via the promotion of SOX2 and promotes EMT. The NOTCH4/HEY1 pathway is specifically upregulated via a positive reciprocal feedback loop mediated by the HEY1-medaited regulation of NOTCH4 transcription, and SOX2 correlates with HEY1 expression in SCC from other primary sites.
Collapse
Affiliation(s)
- Takahito Fukusumi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Theresa W Guo
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuling Ren
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sunny Haft
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chao Liu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Akihiro Sakai
- Department of Otolaryngology‑Head and Neck Surgery, Tokai University, School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Mizuo Ando
- Department of Otolaryngology‑Head and Neck Surgery, University of Tokyo, Tokyo 113‑8655, Japan
| | - Yuki Saito
- Department of Otolaryngology‑Head and Neck Surgery, University of Tokyo, Tokyo 113‑8655, Japan
| | - Sayed Sadat
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph A Califano
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
SOX2/SALL4 stemness axis modulates Notch signaling genes to maintain self-renewal capacity of esophageal squamous cell carcinoma. Mol Cell Biochem 2020; 476:921-929. [PMID: 33098486 DOI: 10.1007/s11010-020-03956-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
Stemness phenotype is considered as the centerpiece of cancer biology due to its potential in conventional chemo-radiotherapy resistance and tumor recurrence after clinical intervention. This feature in tumor mass belongs to activation of core regulatory stemness factors and different cell signaling pathways in cancer stem cells. We aimed in this study to elucidate contribution of Notch signaling pathway in stemness state of esophageal squamous cell carcinoma (ESCC) through their relevance with stem cell markers SOX2 and SALL4. 50 ESCC tumor and related margin normal tissues were considered and categorized based on SOX2/SALL4 expression pattern, and mRNA levels of Notch signaling genes including ligands, receptors, target genes, and transcriptional coactivator were analyzed in the selected groups using qRT-PCR. Concomitant overexpression of stem cell markers SOX2 and SALL4 in ESCCs upregulated the involved genes in Notch signaling pathway. Upregulation of Notch pathway genes associated with depth of tumor invasion and lymph node metastasis of ESCC. Based on biological function of SOX2 and SALL4 axis in stemness state potential, our results may suggest contribution of Notch signaling pathway in self-renewal capacity of ESCCs, as well as invasion and metastasis of the disease. To the best of our knowledge, this is the first report elucidating the crosstalk between SOX2/SALL4 stemness factors and Notch signaling pathway in cancer research.
Collapse
|
8
|
Fahim Y, Yousefi M, Izadpanah MH, Forghanifard MM. TWIST1 correlates with Notch signaling pathway to develop esophageal squamous cell carcinoma. Mol Cell Biochem 2020; 474:181-188. [PMID: 32712748 DOI: 10.1007/s11010-020-03843-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
Notch signaling pathway mediates different biological processes including stem cell self-renewal, progenitor cell fate decision, and terminal differentiation. TWIST1 plays a key role in tumor development and metastasis through inducing epithelial-mesenchymal transition (EMT). Expression of the core transcriptional complex of Notch pathway and its target genes, as well as TWIST1 overexpression, are closely related to the aggressive clinicopathological variables of esophageal squamous cell carcinoma (ESCC). Here we aimed to functionally elucidate probable crosstalk between TWIST1 and Notch pathway in ESCCs. Correlation between TWIST1 and Notch target genes was analyzed in 50 ESCCs and corresponding normal tissues. Using retroviral system, enforced expression of TWIST1 was established in ESCC line KYSE-30 cells and expression of Notch signaling genes was assessed. Significant correlation between TWIST1 and HEY1/HEY2 expression was found in different pathological variable of ESCC poor prognosis. Induced expression of TWIST1 in KYSE-30 cells caused a noteworthy increase of Notch pathway genes expression revealing regulatory role of TWIST1 on Notch signaling genes in the cells. Based on existed correlations between expression of TWIST1 and Notch pathway genes in different pathological features of ESCC patients, as well as KYSE-30 cell line, we may extrapolate that TWIST1 is involved in aggressiveness of the disease through regulation of Notch signaling genes. To the best of knowledge, this is the first report describing the impact of TWIST1 on Notch cascade genes in ESCC.
Collapse
Affiliation(s)
- Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhgan Yousefi
- Department of Biology, Damghan Branch, Islamic Azad University, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Iran
| | | | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan Branch, Islamic Azad University, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Iran.
| |
Collapse
|
9
|
Mahmoudian RA, Forghanifard MM. Crosstalk between MEIS1 and markers of different cell signaling pathways in esophageal squamous cell carcinoma. Mol Biol Rep 2020; 47:3439-3448. [PMID: 32372171 DOI: 10.1007/s11033-020-05423-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
The homeobox transcription factor MEIS1 is involved in cell fate decision, stem cells properties, gastrointestinal (GI) tract development, and progression of several malignancies such as esophageal squamous cell carcinoma (ESCC). Increasing evidences suggest the crosstalk between MEIS1 and cell signaling pathways. Therefore, our aim in present study was to investigate the probable linkage of MEIS1 expression with key genes of different cell signaling pathways in ESCC tumorigenesis, and their correlation with clinicopathological feature of the patients. The gene expression profiling of MEIS1 and different cell signaling genes including SALL4, SIZN1, and HEY1 (stemness state, BMP, and NOTCH signaling pathways, respectively) was performed using quantitative real-time reverse transcription polymerase chain reaction (PCR) in fresh tumoral compared to margin normal tissues of 50 treatment-naive ESCC samples. The mRNA expression of MEIS1/SIZN1, SIZN1/HEY1, and SIZN1/SALL4 were significantly associated to each other (P < 0.05). There were remarkable correlations between concomitant mRNA expression of MEIS1 and SIZN1 in tumors with invasion to adventitia, early stages of tumor progression and poorly differentiated tumors. Moreover, expression of MEIS1 and HEY1 was correlated to each other in primary stages of tumor progression and non-invaded tumors. Expression of MEIS1 was significantly associated with SALL4 in poorly differentiated tumors. Our results indicated that correlation between different cell signaling pathway-related genes may lead to esophageal tumorigenesis. It is illustrated that MEIS1 as a HOX gene has a significant correlation with stemness state, BMP, and NOTCH signaling pathways via the SIZN1.
Collapse
Affiliation(s)
| | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan branch, Islamic Azad University, Cheshmeh-Ali boulevard, Sa'dei square, Damghan, Islamic Republic of Iran.
| |
Collapse
|
10
|
Forghanifard MM, Azaraz S, Ardalan Khales S, Morshedi Rad D, Abbaszadegan MR. MAML1 promotes ESCC aggressiveness through upregulation of EMT marker TWIST1. Mol Biol Rep 2020; 47:2659-2668. [PMID: 32180088 DOI: 10.1007/s11033-020-05356-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mastermind-like 1 (MAML1) is the main transcriptional co-activator of Notch signaling pathway. It plays essential roles in several pathways including MEF2C, p53, Nf-кB and Wnt/β-catenin. TWIST1 is known as a regulator of epithelial mesenchymal transition (EMT), which is considered as a primary step in promotion of tumor cell metastasis. Since concomitant expression of these genes was observed in tumors, our aim in this study was to elucidate the linkage between MAML1 and TWIST1 co-overexpression in esophageal squamous cell carcinoma (ESCC). RESULTS While MAML1 silencing significantly down-regulated TWIST1, its ectopic expression up-regulated TWIST1 expression in both mRNA and protein levels in KYSE-30 cells. Expression of mesenchymal markers was increased significantly after MAML1 and TWIST1 ectopic expression, while epithelial markers expression was significantly decreased after silencing of both genes. Concomitant protein expression of MAML1 and TWIST1 was significantly observed in ESCC patients. Enforced expression of TWIST1 had no impact on MAML1 gene expression in KYSE-30 cells. CONCLUSION The results clearly suggest transcriptional regulation of TWIST1 by MAML1 transcription factor in ESCC cells KYSE-30. Since TWIST1 is known as an EMT inducing marker, our results may revealed the mastermind behind TWIST1 function and introduced MAML1 as an upstream master regulator of TWIST1 and EMT in KYSE-30 cells.
Collapse
Affiliation(s)
| | - Shirin Azaraz
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Ardalan Khales
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Morshedi Rad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
11
|
Jiang S, Zhou F, Zhang Y, Zhou W, Zhu L, Zhang M, Luo J, Ma R, Xu X, Zhu J, Dong X, Zhang S, Fang J, Sun J, Yang X. Identification of tumorigenicity-associated genes in osteosarcoma cell lines based on bioinformatic analysis and experimental validation. J Cancer 2020; 11:3623-3633. [PMID: 32284759 PMCID: PMC7150450 DOI: 10.7150/jca.37393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary malignant tumor of bone. Tumorigenic investigation of osteosarcoma cell lines may facilitate preclinical studies of targeted therapy. Therefore, the aim of this study was to explore the tumorigenicity-associated genes in osteosarcoma cells. We found that 138 genes were highly expressed and 86 genes were lowly expressed in highly tumorigenic osteosarcoma cell lines (143B, MNNG/HOS, and SJSA-1) compared with poorly tumorigenic osteosarcoma cell lines (MG-63, Saos-2, and U-2 OS). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that highly expressed genes were associated with amino acids and energy metabolism, while lowly expressed genes were associated with cell cycle and DNA replication. Gene Ontology (GO) analysis showed that highly expressed genes were associated with endoplasmic reticulum stress response and aggrephagy, whereas lowly expressed genes were correlated with extracellular matrix assembly and DNA damage response. Further analysis identified six highly expressed genes and six lowly expressed genes. Three of highly expressed genes (DDX10, FOXA2, and HEY1) were correlated with poor prognosis, while three of lowly expressed genes (CYP26B1, GP1BB, and IFI44) showed the opposite trend in patients with osteosarcoma. Knockdown of HEY1 significantly inhibited the tumorigenicity of 143B cells in BALB/c nude mice.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.,School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Fei Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yanhua Zhang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Weiping Zhou
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Linghua Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jingfeng Luo
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Rui Ma
- Department of Surgery, Zhejiang University Hospital, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Jiying Zhu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Xue Dong
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Shuangling Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Research, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| |
Collapse
|
12
|
Song J, Lu Y, Sun W, Han M, Zhang Y, Zhang J. Changing expression profiles of lncRNAs, circRNAs and mRNAs in esophageal squamous carcinoma. Oncol Lett 2019; 18:5363-5373. [PMID: 31612046 PMCID: PMC6781670 DOI: 10.3892/ol.2019.10880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/26/2019] [Indexed: 01/22/2023] Open
Abstract
Abundant evidence indicates that long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) serve important roles in tumorigenesis and tumour progression. However, their diagnostic and treatment value for esophageal squamous carcinoma (ESCC) remains unknown. A microarray (SBC human ceRNA array V1.0) was performed to assess the expression profiles and biological functions of lncRNAs, circRNAs and mRNAs in ESCC and para-cancerous tissues from three patients. Microarray data were validated by reverse transcription-quantitative polymerase chain reaction for a group of genes. A number of lncRNA-microRNAs (miRNA) and circRNA-miRNA-mRNA networks were constructed. Bioinformatics tools, including gene ontology and Kyoto Encyclopedia of Genes and Genomes biological pathway analyses, were used to predict the functions of differentially expressed lncRNAs, circRNAs and potentially co-expressed target genes. The results revealed that compared with the expression levels of para-cancerous tissues, 1,384 lncRNAs, 2,046 circRNAs and 936 mRNAs were frequently altered in ESCC tissues. Co-expression networks of lncRNAs-miRNAs-circRNAs-mRNAs were constructed based on the correlation analyses among the differentially expressed RNAs. Furthermore, using bioinformatics methods, correlation expression networks were constructed that included cis- and trans-regulatory elements. Therefore, these results suggest that lncRNAs and circRNAs may be involved in the pathogenesis and development of ESCC. These findings provide a novel and systematic perspective on the potential function of noncoding RNAs in ESCC.
Collapse
Affiliation(s)
- Jia Song
- Department of Institute for Cancer Research, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, Xinjiang Uyghur Autonomous Region 830010, P.R. China
| | - Yanrong Lu
- Department of Thoracoabdominal Radiotherapy, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, Xinjiang Uyghur Autonomous Region 830010, P.R. China
| | - Wei Sun
- Department of Thoracic Surgery, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, Xinjiang Uyghur Autonomous Region 830010, P.R. China
| | - Mei Han
- Department of Gastroenterology, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, Xinjiang Uyghur Autonomous Region 830010, P.R. China
| | - Yuan Zhang
- Department of Institute for Cancer Research, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, Xinjiang Uyghur Autonomous Region 830010, P.R. China
| | - Jinrong Zhang
- Department of Thoracoabdominal Radiotherapy, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Urumuqi, Xinjiang Uyghur Autonomous Region 830010, P.R. China
| |
Collapse
|
13
|
Hou G, Zhao Q, Zhang M, Wang P, Ye H, Wang Y, Ren Y, Zhang J, Lu Z. LSD1 regulates Notch and PI3K/Akt/mTOR pathways through binding the promoter regions of Notch target genes in esophageal squamous cell carcinoma. Onco Targets Ther 2019; 12:5215-5225. [PMID: 31308693 PMCID: PMC6613024 DOI: 10.2147/ott.s207238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The aberrant activation of Lysine-specific demethylase 1(LSD1), Notch and PI3K/Akt/mTOR signaling pathways were frequently happened in many cancers, including esophageal squamous cell carcinoma (ESCC). However, the regulatory relationship between LSD1 and Notch as well as PI3K/Akt/mTOR pathways is still unclear. Purpose: This study aimed to explore the regulatory effects and mechanisms of LSD1 on Notch and PI3K/Akt/mTOR pathway in ESCC. Results: Firstly, we demonstrated that LSD1 and proteins in Notch and PI3K/Akt/mTOR pathway were expressed in ESCC cells. Secondly, inhibition of LSD1 by tranylcypromine (TCP) or shRNA could decrease the expressions of related proteins in Notch and PI3K/Akt/mTOR signaling pathways in ESCC cells. Finally, we found that LSD1 could bind to the promoter regions of Notch3, Hes1 and CR2, and the combinations between them were reduced by TCP in ESCC. Conclusion: Summarily, this study indicated that LSD1 might positively regulate Notch and PI3K/Akt/mTOR pathways through binding the promoter regions of related genes in Notch pathway in ESCC.
Collapse
Affiliation(s)
- Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qi Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Mengying Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jianying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
14
|
Karami Madani G, Rad A, Molavi M, Ardalan Khales S, Abbaszadegan MR, Forghanifard MM. Predicting the Correlation of EZH2 and Cancer Stem Cell Markers in Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2018; 49:437-441. [DOI: 10.1007/s12029-017-9985-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Lu Z, Ren Y, Zhang M, Fan T, Wang Y, Zhao Q, Liu HM, Zhao W, Hou G. FLI-06 suppresses proliferation, induces apoptosis and cell cycle arrest by targeting LSD1 and Notch pathway in esophageal squamous cell carcinoma cells. Biomed Pharmacother 2018; 107:1370-1376. [PMID: 30257352 DOI: 10.1016/j.biopha.2018.08.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation of the Notch signaling plays an important role in progression of esophageal squamous cell carcinoma (ESCC) and may represent a potential therapeutic target for ESCC. FLI-06 is a novel Notch inhibitor, preventing the early secretion of Notch signaling. However, little information about the antitumor activity of FLI-06 has been reported so far. To evaluate the anti-tumor activity and possible molecular mechanism of FLI-06 to ESCC cells, the effects of FLI-06 on cell viability, apoptosis and cell cycle were evaluated by CCK-8 and flow cytometry assays, respectively, in ESCC cell lines ECa109 and EC9706, and the expressions of proteins in Notch signaling pathway and LSD1 were investigated after cells were treated with FLI-06 by Western blotting. The results showed that FLI-06 blocked proliferation, induced apoptosis and G1 phase arrest of ESCC cells in a dose-dependent manner. Mechanistically, we found FLI-06 could inhibit Notch signaling pathway by decreasing the expressions of Notch3, DTX1 and Hes1. Interestingly, we also found that the expression of LSD1 (histone lysine specific demethylase 1), which is dysregulated in multiple tumors, was also inhibited by FLI-06. In addition, inhibition of Notch pathway by γ-secretase inhibitor GSI-DAPT could also inhibit LSD1 expression. The current study demonstrated that FLI-06 exerts antitumor activity on ESCC by inhibiting both LSD1 and Notch pathway, which provides the theory support for the treatment of ESCC with FLI-06.
Collapse
Affiliation(s)
- Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of Cancer Chemoprevention, Henan Province, Zhengzhou 450001, China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengying Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianli Fan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Wen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
16
|
Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular Signaling in Tumorigenesis of Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:217-230. [PMID: 29706061 PMCID: PMC5949124 DOI: 10.22034/ibj.22.4.217] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/28/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/β-catenin signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of cell signaling pathways may help to develop new therapeutic targets for GC.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
17
|
Rettig EM, Bishop JA, Agrawal N, Chung CH, Sharma R, Zamuner F, Li RJ, Koch WM, Califano JA, Guo T, Gaykalova DA, Fakhry C. HEY1 is expressed independent of NOTCH1 and is associated with poor prognosis in head and neck squamous cell carcinoma. Oral Oncol 2018; 82:168-175. [PMID: 29909892 DOI: 10.1016/j.oraloncology.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/12/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Notch signaling is frequently altered in head and neck squamous cell carcinoma (HNSCC). However, the nature and clinical implications of this dysregulation are not well understood. We previously described an association of transcriptionally active NOTCH1 Intracellular Domain (NICD1) immunohistochemical (IHC) expression pattern with high-risk pathologic characteristics. Here we further characterize Notch signaling in HNSCC. MATERIALS AND METHODS IHC expression patterns and clinicopathologic associations of Notch pathway molecules were evaluated among 78 tumors with known NOTCH1 mutation status. IHC was performed for JAG1, a NOTCH1 activating ligand, and HEY1, an NICD1 transcriptional target and Notch pathway activation marker. IHC pattern and H-score (% staining × intensity) were recorded and compared to clinicopathologic characteristics and survival. Survival was analyzed using Kaplan Meier method and Cox proportional hazards models (HR). RESULTS JAG1 and NICD1 expression patterns were highly concordant among tumors without truncating NOTCH1 mutations (p < 0.001), but were dissimilar among tumors with truncating NOTCH1 mutations (p = 0.24). There was evidence for JAG1-independent NOTCH1 activation among seven tumors, all with wild-type NOTCH1. HEY1 expression was associated with neither JAG1 nor NICD1 expression, but was associated with NOTCH1 mutation status (p = 0.03). Twelve (16%) tumors expressed HEY1 but not NICD1. Higher HEY1 H-score was significantly associated with worse overall (adjusted hazard ratio [aHR] 2.0, 95% CI = 1.0-4.2) and disease-specific (aHR = 3.3, 95% CI = 1.4-7.9) survival, whereas JAG1 and NICD1 expression were not associated with survival. CONCLUSIONS These findings suggest both NOTCH1-dependent and -independent HEY1 regulation, and imply a previously unrecognized prognostic role for HEY1 in HNSCC.
Collapse
Affiliation(s)
- Eleni M Rettig
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St., Baltimore, MD 21287, United States.
| | - Justin A Bishop
- Department of Pathology, Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, United States
| | - Nishant Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St., Baltimore, MD 21287, United States
| | - Christine H Chung
- Department of Oncology, Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD 21287, United States
| | - Rajni Sharma
- Department of Pathology, Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, United States
| | - Fernando Zamuner
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St., Baltimore, MD 21287, United States
| | - Ryan J Li
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St., Baltimore, MD 21287, United States
| | - Wayne M Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St., Baltimore, MD 21287, United States
| | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St., Baltimore, MD 21287, United States
| | - Theresa Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St., Baltimore, MD 21287, United States
| | - Daria A Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St., Baltimore, MD 21287, United States
| | - Carole Fakhry
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline St., Baltimore, MD 21287, United States; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, United States
| |
Collapse
|
18
|
Ardalan Khales S, Ebrahimi E, Jahanzad E, Ardalan Khales S, Forghanifard MM. MAML1 and TWIST1 co-overexpression promote invasion of head and neck squamous cell carcinoma. Asia Pac J Clin Oncol 2018; 14:e434-e441. [PMID: 29333702 DOI: 10.1111/ajco.12843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
AIMS Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with considerable morbidity and mortality. Invasion and metastasis of HNSCC is a complex process involving multiple molecules and signaling pathways. Twist Family BHLH Transcription Factor 1 (TWIST1) and Mastermind-like 1 (MAML1) are essential in induction of epithelial-mesenchymal transition through direct regulation of implicated molecules in cellular adhesion, migration and invasion. Our aim in this study was to assess the clinical significance of MAML1 and TWIST1 expression in HNSCC, and elucidate the probable correlation between these genes to exhibit their possible associations with progression and metastasis of the disease. METHODS The gene expression profile of MAML1 and TWIST1 was assessed in fresh tumoral compared to distant tumor-free tissues of 55 HNSCC patients using quantitative real-time Polymerase chain reaction (PCR). RESULTS Significant overexpression of MAML1 and TWIST1 mRNA was observed in 49.1% and 38.2% (P ˂ 0.05) of tumor specimens, respectively. Overexpression of MAML1 was associated with vascular invasion (P = 0.048). Concomitant overexpression of MAML1 and TWIST1 was significantly correlated to each other (P = 0.004). Co-overexpression of the genes was significantly correlated to the various clinicopathological indices of poor prognosis including depth of tumor invasion (P < 0.01), lymphatic invasion and grade of tumor cell differentiation (P < 0.05). CONCLUSIONS Significant correlation between MAML1 and TWIST1 in HNSCC was revealed. This study was the first report elucidating MAML1 clinical relevance in HNSCC. These new findings suggest an oncogenic role for concomitant expression of MAML1 and TWIST1 genes in HNSCC invasion and metastasis.
Collapse
Affiliation(s)
- Sima Ardalan Khales
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Ebrahimi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Eisa Jahanzad
- Department of Clinical Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Ardalan Khales
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
19
|
Fukusumi T, Guo TW, Sakai A, Ando M, Ren S, Haft S, Liu C, Amornphimoltham P, Gutkind JS, Califano JA. The NOTCH4- HEY1 Pathway Induces Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2017; 24:619-633. [PMID: 29146722 DOI: 10.1158/1078-0432.ccr-17-1366] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/16/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022]
Abstract
Purpose: Recently, several comprehensive genomic analyses demonstrated NOTCH1 and NOTCH3 mutations in head and neck squamous cell carcinoma (HNSCC) in approximately 20% of cases. Similar to other types of cancers, these studies also indicate that the NOTCH pathway is closely related to HNSCC progression. However, the role of NOTCH4 in HNSCC is less well understood.Experimental Design: We analyzed NOTCH4 pathway and downstream gene expression in the TCGA data set. To explore the functional role of NOTCH4, we performed in vitro proliferation, cisplatin viability, apoptosis, and cell-cycle assays. We also compared the relationships among NOTCH4, HEY1, and epithelial-mesenchymal transition (EMT)-related genes using the TCGA data set and in vitro assays.Results:HEY1 is specifically upregulated in HNSCC compared with normal tissues in the TCGA data set. NOTCH4 is more significantly related to HEY1 activation in HNSCC in comparison with other NOTCH receptors. NOTCH4 promotes cell proliferation, cisplatin resistance, inhibition of apoptosis, and cell-cycle dysregulation. Furthermore, NOTCH4 and HEY1 upregulation resulted in decreased E-cadherin expression and increased Vimentin, Fibronectin, TWIST1, and SOX2 expression. NOTCH4 and HEY1 expression was associated with an EMT phenotype as well as increased invasion and cell migration.Conclusions: In HNSCC, the NOTCH4-HEY1 pathway is specifically upregulated, induces proliferation and cisplatin resistance, and promotes EMT. Clin Cancer Res; 24(3); 619-33. ©2017 AACR.
Collapse
Affiliation(s)
- Takahito Fukusumi
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Theresa W Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Akihiro Sakai
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Mizuo Ando
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Shuling Ren
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Sunny Haft
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Chao Liu
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | | | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Joseph A Califano
- Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
20
|
Dzobo K, Senthebane DA, Rowe A, Thomford NE, Mwapagha LM, Al-Awwad N, Dandara C, Parker MI. Cancer Stem Cell Hypothesis for Therapeutic Innovation in Clinical Oncology? Taking the Root Out, Not Chopping the Leaf. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:681-691. [PMID: 27930094 DOI: 10.1089/omi.2016.0152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Arielle Rowe
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nicholas Ekow Thomford
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , South Africa
| | - Lamech M Mwapagha
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nasir Al-Awwad
- 4 Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University , Albaha, Saudi Arabia
| | - Collet Dandara
- 3 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , South Africa
| | - M Iqbal Parker
- 1 International Centre for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
21
|
Roudi R, Ebrahimi M, Shariftabrizi A, Madjd Z. Cancer stem cell research in Iran: potentials and challenges. Future Oncol 2017; 13:1809-1826. [PMID: 28776391 DOI: 10.2217/fon-2017-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Treatment modalities can reduce cancer-related mortality; however, a majority of patients develop drug resistance, metastasis and relapse. It has been proposed that tumorigenic characteristics of tumors are related to a proportion of cancer cells, termed cancer stem cells (CSCs). Following the first evidence regarding the existence of CSC population in acute myeloid leukemia in 1997, publications in CSCs field showed an explosive trend in all cancer types around the world. First research paper in the field of CSCs in Iran was published in 2004 on prostate cancer. Subsequently, an annual number of publications in the field of CSCs displayed a rapidly growing trend. Therefore, in the current review, we have presented a comprehensive evaluation of the CSCs research in Iran.
Collapse
Affiliation(s)
- Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells & Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Ahmad Shariftabrizi
- Department of Nuclear Medicine & Molecular Imaging, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Forouzanfar N, Baranova A, Milanizadeh S, Heravi-Moussavi A, Jebelli A, Abbaszadegan MR. Novel candidate genes may be possible predisposing factors revealed by whole exome sequencing in familial esophageal squamous cell carcinoma. Tumour Biol 2017; 39:1010428317699115. [PMID: 28459198 DOI: 10.1177/1010428317699115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Esophageal squamous cell carcinoma is one of the deadliest of all the cancers. Its metastatic properties portend poor prognosis and high rate of recurrence. A more advanced method to identify new molecular biomarkers predicting disease prognosis can be whole exome sequencing. Here, we report the most effective genetic variants of the Notch signaling pathway in esophageal squamous cell carcinoma susceptibility by whole exome sequencing. We analyzed nine probands in unrelated familial esophageal squamous cell carcinoma pedigrees to identify candidate genes. Genomic DNA was extracted and whole exome sequencing performed to generate information about genetic variants in the coding regions. Bioinformatics software applications were utilized to exploit statistical algorithms to demonstrate protein structure and variants conservation. Polymorphic regions were excluded by false-positive investigations. Gene-gene interactions were analyzed for Notch signaling pathway candidates. We identified novel and damaging variants of the Notch signaling pathway through extensive pathway-oriented filtering and functional predictions, which led to the study of 27 candidate novel mutations in all nine patients. Detection of the trinucleotide repeat containing 6B gene mutation (a slice site alteration) in five of the nine probands, but not in any of the healthy samples, suggested that it may be a susceptibility factor for familial esophageal squamous cell carcinoma. Noticeably, 8 of 27 novel candidate gene mutations (e.g. epidermal growth factor, signal transducer and activator of transcription 3, MET) act in a cascade leading to cell survival and proliferation. Our results suggest that the trinucleotide repeat containing 6B mutation may be a candidate predisposing gene in esophageal squamous cell carcinoma. In addition, some of the Notch signaling pathway genetic mutations may act as key contributors to esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Narjes Forouzanfar
- 1 Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ancha Baranova
- 2 School of System Biology, George Mason University, Fairfax, VA, USA
| | - Saman Milanizadeh
- 1 Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Jebelli
- 1 Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- 1 Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,4 Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Liu Z, Sanders AJ, Liang G, Song E, Jiang WG, Gong C. Hey Factors at the Crossroad of Tumorigenesis and Clinical Therapeutic Modulation of Hey for Anticancer Treatment. Mol Cancer Ther 2017; 16:775-786. [PMID: 28468863 DOI: 10.1158/1535-7163.mct-16-0576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Zihao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Gehao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
24
|
Hashemi Bidokhti M, Abbaszadegan MR, Sharifi N, Abbasi Sani S, Forghanifard MM. Contribution of MAML1 in esophageal squamous cell carcinoma tumorigenesis. Ann Diagn Pathol 2017; 27:79-82. [PMID: 28325367 DOI: 10.1016/j.anndiagpath.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/14/2017] [Accepted: 01/29/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Notch signaling pathway is involved in different cellular and developmental processes including cell proliferation, differentiation and apoptosis. Mastermind like1 (MAML1) is a critical key transcription coactivator of this pathway. In this study, we aimed to examine MAML1 protein expression in esophageal squamous cell carcinoma (ESCC) and reveal its association with clinicopathological variables of the patients. METHODS Tumoral and their margin normal tissues from 56 ESCC patients were recruited for protein expression analysis using immunohistochemistry (IHC). Furthermore, MAML1 expression was analyzed in ESCC cell line KYSE-30 using immunocytochemistry. RESULTS Overexpression of MAML1 was detected in 59% of tumor samples. It was significantly associated with different indices of poor prognosis including depth of tumor invasion (P=0.026), grade of tumor differentiation (P=0.002), stage of tumor progression (P=0.004) and sex (P=0.027). CONCLUSION Beside the appearing evidences explaining MAML1 role in different cellular processes and its deviations in different malignancies and also based on its correlation with different clinicopathological variables of ESCC, MAML1 can be proposed as potentially novel molecular marker for ESCC progression and tumorigenesis as well as therapeutic target to inhibit and reverse progression and development of the disease.
Collapse
Affiliation(s)
- Mahnaz Hashemi Bidokhti
- Department of Biology, Damghan branch, Islamic Azad University, Damghan, Iran.; Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Noorieh Sharifi
- Department of Pathology, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soodabeh Abbasi Sani
- Department of Biology, Damghan branch, Islamic Azad University, Damghan, Iran.; Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
25
|
Rad A, Esmaeili Dizghandi S, Abbaszadegan MR, Taghechian N, Najafi M, Forghanifard MM. SOX1 is correlated to stemness state regulator SALL4 through progression and invasiveness of esophageal squamous cell carcinoma. Gene 2016; 594:171-175. [DOI: 10.1016/j.gene.2016.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
|
26
|
Najafi M, Abbaszadegan MR, Rad A, Dastpak M, Boroumand-Noughabi S, Forghanifard MM. Crosstalk between SHH and stemness state signaling pathways in esophageal squamous cell carcinoma. J Cell Commun Signal 2016; 11:147-153. [PMID: 27905054 DOI: 10.1007/s12079-016-0366-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/22/2016] [Indexed: 01/28/2023] Open
Abstract
The expression of GLI1 as a downstream gene of sonic hedgehog (Hh) pathway, studied in a variety of cancers including esophageal squamous cell carcinoma (ESCC). However, the interaction of Hh with other developmental pathways needs to be elucidated. In this study, we aimed to investigate the correlation of GLI1 expression with transcription factors (TFs) of stem cell signaling pathways, and their association with clinico-pathological data of ESCC. Using real-time PCR, we assessed the expression of GLI1 mRNA in 49 ESCC patients, and analyzed the correlation between GLI1 and selected TFs. The results showed overexpression of GLI1 in ESCC tissues in significant correlation with lymph node metastasis. The GLI1 up-regulation was also correlated to the SOX2 and SIZN1 (Smad-interacting zinc finger protein) expression. These correlations may confirmed the role of GLI1 in crosstalk among different cell signaling pathways in ESCC. To our knowledge, this is the first study to demonstrate the correlation of GLI1 expression with stemness marker and BMP signaling in ESCC.
Collapse
Affiliation(s)
- Maryam Najafi
- Clinical Research Development Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahtab Dastpak
- Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | | |
Collapse
|
27
|
Zhang M, Biswas S, Qin X, Gong W, Deng W, Yu H. Does Notch play a tumor suppressor role across diverse squamous cell carcinomas? Cancer Med 2016; 5:2048-60. [PMID: 27228302 PMCID: PMC4884632 DOI: 10.1002/cam4.731] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/21/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
The role of Notch pathway in tumorigenesis is highly variable. It can be tumor suppressive or pro‐oncogenic, typically depending on the cellular context. Squamous cell carcinoma (SCC) is a cancer of the squamous cell, which can occur in diverse human tissues. SCCs are one of the most frequent human malignancies for which the pathologic mechanisms remain elusive. Recent genomic analysis of diverse SCCs identified marked levels of mutations in NOTCH1, implicating Notch signaling pathways in the pathogenesis of SCCs. In this review, evidences highlighting NOTCH's role in different types of SCCs are summarized. Moreover, based on accumulating structural information of the NOTCH receptor, the functional consequences of NOTCH1 gene mutations identified from diverse SCCs are analyzed, emphasizing loss of function of Notch in these cancers. Finally, we discuss the convergent view on an intriguing possibility that Notch may function as tumor suppressor in SCCs across different tissues. These mechanistic insights into Notch signaling pathways will help to guide the research of SCCs and development of therapeutic strategies for these cancers.
Collapse
Affiliation(s)
- Min Zhang
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California
| | - Xin Qin
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenrong Gong
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenbing Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California
| | - Hongjun Yu
- Department of Biology, Brookhaven National Lab, NewYork
| |
Collapse
|
28
|
Qian X, Tan C, Wang F, Yang B, Ge Y, Guan Z, Cai J. Esophageal cancer stem cells and implications for future therapeutics. Onco Targets Ther 2016; 9:2247-54. [PMID: 27143920 PMCID: PMC4846051 DOI: 10.2147/ott.s103179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Esophageal carcinoma (EC) is a lethal disease with high morbidity and mortality worldwide, and the incidence has been increasing in recent years. Although the diagnosis and treatment of EC have improved considerably, EC has rapidly progressed in the clinical setting and has a poor prognosis for its metastasis and recurrence. The general idea of cancer stem cells (CSCs) is primarily based on clinical and experimental observations, indicating the existence of a subpopulation of cells that can self-renew and differentiate. The EC stem cells, which can be isolated from normal pluripotent stem cells by applying similar biomarkers, may participate in promoting esophageal tumorigenesis through renewal and repair. In this review, major emphasis is given to CSC markers, altered CSC-specific pathways, and molecular targeting agents currently available to target CSCs of esophageal cancer. The roles of numerous markers (CD44, aldehyde dehydrogenase, CD133, and ATP-binding cassette subfamily G member 2) and developmental signaling pathways (Wnt/β-catenin, Notch, hedgehog, and Hippo) in isolating esophageal CSCs are discussed in detail. Targeting CSCs can be a logical strategy to treat EC, as these cells are responsible for carcinoma recurrence and chemoradiation resistance.
Collapse
Affiliation(s)
- Xia Qian
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, People's Republic of China
| | - Cheng Tan
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, People's Republic of China
| | - Feng Wang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, People's Republic of China
| | - Baixia Yang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, People's Republic of China
| | - Yangyang Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, People's Republic of China
| | - Zhifeng Guan
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, People's Republic of China
| | - Jing Cai
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|