1
|
Wu X, Li Z, Wang ZQ, Xu X. The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM. Front Neurosci 2023; 17:1242448. [PMID: 37599996 PMCID: PMC10436222 DOI: 10.3389/fnins.2023.1242448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes (MCPHs) have been identified. Among these MCPHs, MCPH5, which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer.
Collapse
Affiliation(s)
- Xingxuan Wu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Laboratory of Genome Stability, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Zheng Li
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhao-Qi Wang
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Laboratory of Genome Stability, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Hossain MJ, Chowdhury UN, Islam MB, Uddin S, Ahmed MB, Quinn JMW, Moni MA. Machine learning and network-based models to identify genetic risk factors to the progression and survival of colorectal cancer. Comput Biol Med 2021; 135:104539. [PMID: 34153790 DOI: 10.1016/j.compbiomed.2021.104539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023]
Abstract
Colorectal cancer (CRC) is one of the most common and lethal malignant lesions. Determining how the identified risk factors drive the formation and development of CRC could be an essential means for effective therapeutic development. Aiming this, we investigated how the altered gene expression resulting from exposure to putative CRC risk factors contribute to prognostic biomarker identification. Differentially expressed genes (DEGs) were first identified for CRC and other eight risk factors. Gene set enrichment analysis (GSEA) through the molecular pathway and gene ontology (GO), as well as protein-protein interaction (PPI) network, were then conducted to predict the functions of these DEGs. Our identified genes were explored through the dbGaP and OMIM databases to compare with the already identified and known prognostic CRC biomarkers. The survival time of CRC patients was also examined using a Cox Proportional Hazard regression-based prognostic model by integrating transcriptome data from The Cancer Genome Atlas (TCGA). In this study, PPI analysis identified 4 sub-networks and 8 hub genes that may be potential therapeutic targets, including CXCL8, ICAM1, SOD2, CXCL2, CCL20, OIP5, BUB1, ASPM and IL1RN. We also identified seven signature genes (PRR5.ARHGAP8, CA7, NEDD4L, GFR2, ARHGAP8, SMTN, OIP5) in independent analysis and among which PRR5. ARHGAP8 was found in both multivariate analyses and in analyses that combined gene expression and clinical information. This approach provides both mechanistic information and, when combined with predictive clinical information, good evidence that the identified genes are significant biomarkers of processes involved in CRC progression and survival.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Utpala Nanda Chowdhury
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M Babul Islam
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahadat Uddin
- Complex Systems Research Group & Project Management Program, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Julian M W Quinn
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Mohammad Ali Moni
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; WHO Collaborating Centre on eHealth, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
3
|
Cabral de Carvalho Corrêa D, Dias Oliveira I, Mascaro Cordeiro B, Silva FA, de Seixas Alves MT, Saba-Silva N, Capellano AM, Dastoli P, Cavalheiro S, Caminada de Toledo SR. Abnormal spindle-like microcephaly-associated (ASPM) gene expression in posterior fossa brain tumors of childhood and adolescence. Childs Nerv Syst 2021; 37:137-145. [PMID: 32591873 DOI: 10.1007/s00381-020-04740-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE In neurogenesis, ASPM (abnormal spindle-like microcephaly-associated) gene is expressed mainly in the ventricular zone of posterior fossa and is the major determinant in the cerebral cortex. Besides its role in embryonic development, ASPM overexpression promotes tumor growth, including central nervous system (CNS) tumors. This study aims to investigate ASPM expression levels in most frequent posterior fossa brain tumors of childhood and adolescence: medulloblastoma (MB), ependymoma (EPN), and astrocytoma (AS), correlating them with clinicopathological characteristics and tumor solid portion size. METHODS Quantitative reverse transcription (qRT-PCR) is used to quantify ASPM mRNA levels in 80 pre-treatment tumor samples: 28 MB, 22 EPN, and 30 AS. The tumor solid portion size was determined by IOP-GRAACC Diagnostic Imaging Center. We correlated these findings with clinicopathological characteristics and tumor solid portion size. RESULTS Our results demonstrated that ASPM gene was overexpressed in MB (p = 0.007) and EPN (p = 0.0260) samples. ASPM high expression was significantly associated to MB samples from patients with worse overall survival (p = 0.0123) and death due to disease progression (p = 0.0039). Interestingly, two patients with AS progressed toward higher grade showed ASPM overexpression (p = 0.0046). No correlation was found between the tumor solid portion size and ASPM expression levels in MB (p = 0.1154 and r = - 0.4825) and EPN (p = 0.1108 and r = - 0.3495) samples. CONCLUSION Taking in account that ASPM gene has several functions to support cell proliferation, as mitotic defects and premature differentiation, we suggest that its overexpression, presumably, plays a critical role in disease progression of posterior fossa brain tumors of childhood and adolescence.
Collapse
Affiliation(s)
- Débora Cabral de Carvalho Corrêa
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Bruna Mascaro Cordeiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Frederico Adolfo Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Imaging Diagnosis, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Pathology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Nasjla Saba-Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Andrea Maria Capellano
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia Dastoli
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sergio Cavalheiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil. .,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|