1
|
Chang MR, Matnurov EM, Wu C, Arakelyan J, Choe HJ, Kushnarev V, Yap JY, Soo XX, Chow MJ, Berger W, Ang WH, Babak MV. Leveraging Immunogenic Cell Death to Enhance the Immune Response against Malignant Pleural Mesothelioma Tumors. J Am Chem Soc 2025; 147:7908-7920. [PMID: 39992709 PMCID: PMC11887451 DOI: 10.1021/jacs.4c17966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Although various metal-based compounds have exhibited excellent immunogenic cell death (ICD)-inducing properties both in vitro and in vivo, the majority of these compounds have been discovered serendipitously. In this work, we have successfully synthesized and characterized 35 cyclometalated Au(III) complexes containing dithiocarbamate ligands, with 25 of these complexes being previously unreported. Their ability to induce phagocytosis in vitro against immunologically "cold" malignant pleural mesothelioma (MPM) cells was strongly dependent on the cyclometalated scaffold and the overall lipophilicity of the complexes. We elucidated the role of cell death mechanisms in the observed ICD effects and identified correlations between the ability of the complexes to induce necrotic cell death and ICD, both in vitro and in vivo. Complex 2G, with its high phagocytosis rates and low necrosis rates, was recognized as a bona fide ICD inducer, demonstrating a remarkably long-lasting immune response in vaccinated mice. In contrast, complex 1C, characterized by high phagocytosis rates and high necrosis rates, failed to elicit a sustained immune response upon following vaccination; however, it triggered selective activation of calreticulin in tumors upon direct in vivo administration. Overall, this study offers a framework for predicting ICD effects in vivo for structurally similar Au(III) complexes, with the potential for extension to other series of metal complexes.
Collapse
Affiliation(s)
- Meng Rui Chang
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
| | - Egor M. Matnurov
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Chengnan Wu
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Jemma Arakelyan
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Ho-Jung Choe
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Vladimir Kushnarev
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| | - Jian Yu Yap
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
- NUS Graduate
School - Integrated Science and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Xiu Xuan Soo
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
| | - Mun Juinn Chow
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
| | - Walter Berger
- Center for
Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, Vienna 1090, Austria
| | - Wee Han Ang
- Department
of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117543, Singapore
- NUS Graduate
School - Integrated Science and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Maria V. Babak
- Drug Discovery
Lab, Department of Chemistry, City University
of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People’s Republic
of China
| |
Collapse
|
2
|
Nian Q, Lin Y, Zeng J, Zhang Y, Liu R. Multifaceted functions of the Wilms tumor 1 protein: From its expression in various malignancies to targeted therapy. Transl Oncol 2025; 52:102237. [PMID: 39672002 PMCID: PMC11700300 DOI: 10.1016/j.tranon.2024.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024] Open
Abstract
Wilms tumor 1 (WT1) is a multifaceted protein with dual functions, acting both as a tumor suppressor and as a transcriptional activator of oncogenes. WT1 is highly expressed in various types of solid tumors and leukemia, and its elevated expression is associated with a poor prognosis for patients. High WT1 expression also indicates a greater risk of refractory disease or relapse. Consequently, targeting WT1 is an effective strategy for disease prevention and relapse mitigation. Substantial information is available on the pathogenesis of WT1 in various diseases, and several WT1-targeted therapies, including chemical drugs, natural products, and targeted vaccines, are available. We provide a comprehensive review of the mechanisms by which WT1 influences malignancies and summarize the resulting therapeutic approaches thoroughly. This article provides information on the roles of WT1 in the pathogenesis of different cancers and provides insights into drugs and immunotherapies targeting WT1. The goal of this work is to provide a systematic understanding of the current research landscape and of future directions for WT1-related studies.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072.
| | - Yan Lin
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Yanna Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing, China, 400000.
| |
Collapse
|
3
|
Nabeta R, Kanaya A, Elbadawy M, Usui T, Furuya T, Suzuki K, Uchide T. Chemosensitivity of three patient-derived primary cultures of canine pericardial mesothelioma by single-agent and combination treatment. Front Vet Sci 2023; 10:1267359. [PMID: 38026668 PMCID: PMC10653591 DOI: 10.3389/fvets.2023.1267359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Canine mesothelioma is a rare malignant tumor that mostly affects body cavities, such as the pericardial and pleural cavities. Chemotherapy plays a crucial role in the treatment of canine mesotheliomas. We aimed to compare the antitumor effects of single-agent and combination chemotherapeutic agents on patient-derived primary cultures of canine pericardial mesothelioma established in this study. We planned to generate xenograft models for future studies. MATERIAL AND METHODS Effusion samples were collected from three dogs with histologically diagnosed pericardial mesothelioma and used for primary culture. Cultured cells were characterized by immunostaining for pan-cytokeratin AE1/AE3, vimentin, Wilms' tumor suppressor gene 1 (WT1), and cytokeratin 5 (CK5). To assess the tumorigenic properties of cells in the effusion and generate a xenograft model, the cell suspension was injected into a severe combined immunodeficient (SCID) mouse either subcutaneously (SC) or intraperitoneally (IP). Lastly, chemosensitivity of established primary cultures against four drugs, doxorubicin, vinorelbine, carboplatin, and gemcitabine, by single-agent treatment as well as combination treatment of carboplatin at a fixed concentration, either 10 or 100 μM, and gemcitabine at different concentrations ranging from 0-1000 μM was assessed by cell viability assay. RESULTS Primary cultures were successfully generated and characterized by dual positivity for AE1/AE3 and vimentin and positive staining for WT-1 and CK5, confirming the mesothelial origin of the cells. In the xenograft models, SC mouse developed a subcutaneous mass, whereas IP mouse developed multiple intraperitoneal nodules. The masses were histopathologically consistent with mesotheliomas. The chemosensitivity assay revealed that carboplatin had the highest anti-tumor effects among the four tested single-agent treatments. Furthermore, carboplatin at 100 μM combined with gemcitabine at clinically relevant doses demonstrated the augmented anti-tumor effects compared to single-agent treatment. DISCUSSION AND CONCLUSION Primary cultures and xenograft models generated in this study could be useful tools for in vitro and in vivo studies of canine mesothelioma. Carboplatin is a highly effective chemotherapeutic agent against canine mesothelioma when used as a sole agent and in combination with gemcitabine.
Collapse
Affiliation(s)
- Rina Nabeta
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Ami Kanaya
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
4
|
Offin M, Sauter JL, Tischfield SE, Egger JV, Chavan S, Shah NS, Manoj P, Ventura K, Allaj V, de Stanchina E, Travis W, Ladanyi M, Rimner A, Rusch VW, Adusumilli PS, Poirier JT, Zauderer MG, Rudin CM, Sen T. Genomic and transcriptomic analysis of a diffuse pleural mesothelioma patient-derived xenograft library. Genome Med 2022; 14:127. [PMID: 36380343 PMCID: PMC9667652 DOI: 10.1186/s13073-022-01129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diffuse pleural mesothelioma (DPM) is an aggressive malignancy that, despite recent treatment advances, has unacceptably poor outcomes. Therapeutic research in DPM is inhibited by a paucity of preclinical models that faithfully recapitulate the human disease. METHODS We established 22 patient-derived xenografts (PDX) from 22 patients with DPM and performed multi-omic analyses to deconvolute the mutational landscapes, global expression profiles, and molecular subtypes of these PDX models and compared features to those of the matched primary patient tumors. Targeted next-generation sequencing (NGS; MSK-IMPACT), immunohistochemistry, and histologic subtyping were performed on all available samples. RNA sequencing was performed on all available PDX samples. Clinical outcomes and treatment history were annotated for all patients. Platinum-doublet progression-free survival (PFS) was determined from the start of chemotherapy until radiographic/clinical progression and grouped into < or ≥ 6 months. RESULTS PDX models were established from both treatment naïve and previously treated samples and were noted to closely resemble the histology, genomic landscape, and proteomic profiles of the parent tumor. After establishing the validity of the models, transcriptomic analyses demonstrated overexpression in WNT/β-catenin, hedgehog, and TGF-β signaling and a consistent suppression of immune-related signaling in PDXs derived from patients with worse clinical outcomes. CONCLUSIONS These data demonstrate that DPM PDX models closely resemble the genotype and phenotype of parental tumors, and identify pathways altered in DPM for future exploration in preclinical studies.
Collapse
Affiliation(s)
- Michael Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jennifer L Sauter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sam E Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacklynn V Egger
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Shweta Chavan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nisargbhai S Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Katia Ventura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Viola Allaj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - William Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10065, USA
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Charles M Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Triparna Sen
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Office - 15-70 E, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Lee WC, Chiu CH, Chu TH, Chien YS. WT1: The Hinge Between Anemia Correction and Cancer Development in Chronic Kidney Disease. Front Cell Dev Biol 2022; 10:876723. [PMID: 35465313 PMCID: PMC9019781 DOI: 10.3389/fcell.2022.876723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) emerge as promising agents to treat anemia in chronic kidney disease (CKD) but the major concern is their correlated risk of cancer development and progression. The Wilms’ tumor gene, WT1, is transcriptionally regulated by HIF and is known to play a crucial role in tumorigenesis and invasiveness of certain types of cancers. From the mechanism of action of HIF–PHIs, to cancer hypoxia and the biological significance of WT1, this review will discuss the link between HIF, WT1, anemia correction, and cancer. We aimed to reveal the research gaps and offer a focused strategy to monitor the development and progression of specific types of cancer when using HIF–PHIs to treat anemia in CKD patients. In addition, to facilitate the long-term use of HIF–PHIs in anemic CKD patients, we will discuss the strategy of WT1 inhibition to reduce the development and progression of cancer.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Hua Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yu-Shu Chien
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Correspondence: Yu-Shu Chien,
| |
Collapse
|
6
|
Cakiroglu E, Senturk S. Genomics and Functional Genomics of Malignant Pleural Mesothelioma. Int J Mol Sci 2020; 21:ijms21176342. [PMID: 32882916 PMCID: PMC7504302 DOI: 10.3390/ijms21176342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer of the mesothelial cells lining the pleural surface of the chest wall and lung. The etiology of MPM is strongly associated with prior exposure to asbestos fibers, and the median survival rate of the diagnosed patients is approximately one year. Despite the latest advancements in surgical techniques and systemic therapies, currently available treatment modalities of MPM fail to provide long-term survival. The increasing incidence of MPM highlights the need for finding effective treatments. Targeted therapies offer personalized treatments in many cancers. However, targeted therapy in MPM is not recommended by clinical guidelines mainly because of poor target definition. A better understanding of the molecular and cellular mechanisms and the predictors of poor clinical outcomes of MPM is required to identify novel targets and develop precise and effective treatments. Recent advances in the genomics and functional genomics fields have provided groundbreaking insights into the genomic and molecular profiles of MPM and enabled the functional characterization of the genetic alterations. This review provides a comprehensive overview of the relevant literature and highlights the potential of state-of-the-art genomics and functional genomics research to facilitate the development of novel diagnostics and therapeutic modalities in MPM.
Collapse
Affiliation(s)
- Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey;
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey;
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
- Correspondence:
| |
Collapse
|
7
|
Namvar S, Woolf AS, Zeef LA, Wilm T, Wilm B, Herrick SE. Functional molecules in mesothelial-to-mesenchymal transition revealed by transcriptome analyses. J Pathol 2018; 245:491-501. [PMID: 29774544 PMCID: PMC6055603 DOI: 10.1002/path.5101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/01/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
Peritoneal fibrosis is a common complication of abdominal and pelvic surgery, and can also be triggered by peritoneal dialysis, resulting in treatment failure. In these settings, fibrosis is driven by activated myofibroblasts that are considered to be partly derived by mesothelial‐to‐mesenchymal transition (MMT). We hypothesized that, if the molecular signature of MMT could be better defined, these insights could be exploited to block this pathological cellular transition. Rat peritoneal mesothelial cells were purified by the use of an antibody against HBME1, a protein present on mesothelial cell microvilli, and streptavidin nanobead technology. After exposure of sorted cells to a well‐known mediator of MMT, transforming growth factor (TGF)‐β1, RNA sequencing was undertaken to define the transcriptomes of mesothelial cells before and during early‐phase MMT. MMT was associated with dysregulation of transcripts encoding molecules involved in insulin‐like growth factor (IGF) and bone morphogenetic protein (BMP) signalling. The application of either recombinant BMP4 or IGF‐binding protein 4 (IGFBP4) ameliorated TGF‐β1‐induced MMT in culture, as judged from the retention of epithelial morphological and molecular phenotypes, and reduced migration. Furthermore, peritoneal tissue from peritoneal dialysis patients showed less prominent immunostaining than control tissue for IGFBP4 and BMP4 on the peritoneal surface. In a mouse model of TGF‐β1‐induced peritoneal thickening, BMP4 immunostaining on the peritoneal surface was attenuated as compared with healthy controls. Finally, genetic lineage tracing of mesothelial cells was used in mice with peritoneal injury. In this model, administration of BMP4 ameliorated the injury‐induced shape change and migration of mesothelial cells. Our findings demonstrate a distinctive MMT signature, and highlight the therapeutic potential for BMP4, and possibly IGFBP4, to reduce MMT. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sara Namvar
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Leo Ah Zeef
- The Bioinformatics Core Facility, The University of Manchester, Manchester, UK
| | - Thomas Wilm
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sarah E Herrick
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Liu Y, Gao X, Wang S, Yuan X, pang Y, Chen J, Wang J. Cancer Stem Cells are Regulated by STAT3 Signalling in Wilms Tumour. J Cancer 2018; 9:1486-1499. [PMID: 29721059 PMCID: PMC5929094 DOI: 10.7150/jca.23277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/13/2018] [Indexed: 01/07/2023] Open
Abstract
The survival rates associated with Wilms tumour (WT) remain dismal despite advancements in detection and treatment strategies. Cancer stem cells (CSCs) are correlated with the initiation, recurrence and metastasis of tumours, but its impact on Wilms cancer stem cell (WCSC) maintenance remains unclear. In this study, CD133+ cells were successfully isolated from a single-cell suspension of the G401 Wilms tumour cell line using magnetic activated cell sorting (MACS). Signal transducers and activators of transcription 3 (STAT3) has been implicated in tumorigenesis, but its contribution to the metastatic progression of WCSCs has not been investigated. Here, we show that STAT3 is overexpressed in WCSCs. Activation of STAT3 in WCSCs initiated a forward feedback loop that was responsible for mediating the aggressive malignant character of Wilms tumour cells in vitro and in vivo. Treatment of CD133+ cells with stattic, a STAT3 inhibitor, also inhibited tumour formation and progression in xenograft animal models in vivo. Collectively, these studies revealed a critical role of STAT3 signalling in WCSC proliferation and motility and a role for CD133 in cancer stem-like cell function, providing evidence for CD133 as a potential therapeutic target in Wilms tumour.
Collapse
Affiliation(s)
- Yanmei Liu
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Xuexiang Gao
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Shuo Wang
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Xuemin Yuan
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Yunqing pang
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China
| | - Jian Chen
- Department of Pediatric Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, PR China,✉ Corresponding authors: Jing Wang, Department of Periodontology, School of Stomatology, Lanzhou University, 199 Donggang Western Road, Lanzhou Gansu 730000, China. Phone: 0931-8915051, Fax: 0931-8915051, E-mail: and Jian Chen, Department of Pediatric Surgery, The First Hospital of Lanzhou University, 1 Donggang Western Road, Lanzhou Gansu 730000, China. E-mail address:
| | - Jing Wang
- School of Stomatology Lanzhou University, Lanzhou, Gansu Province, PR China,✉ Corresponding authors: Jing Wang, Department of Periodontology, School of Stomatology, Lanzhou University, 199 Donggang Western Road, Lanzhou Gansu 730000, China. Phone: 0931-8915051, Fax: 0931-8915051, E-mail: and Jian Chen, Department of Pediatric Surgery, The First Hospital of Lanzhou University, 1 Donggang Western Road, Lanzhou Gansu 730000, China. E-mail address:
| |
Collapse
|