1
|
Diaz-Perez JA, Rosenberg AE. Bone Matrix-forming Tumors. Adv Anat Pathol 2025; 32:168-179. [PMID: 39593236 DOI: 10.1097/pap.0000000000000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Bone matrix-forming tumors are a group of neoplasms that exhibit differentiation toward any stage of osteoblast development. Their clinicopathologic features can resemble one another, yet their clinical management may vary significantly. Therefore, appropriate treatment requires accurate diagnosis, which can be challenging, especially with limited biopsy specimens. Recently, the driver genetic alterations underlying these neoplasms have been discovered, and their protein products can be targeted for diagnosis and therapy. Herein, we summarize the recent advances in our understanding of bone matrix-forming tumors and emphasize the integration of molecular genetics into their conventional clinicopathologic evaluation.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Departments of Pathology and Dermatology, Virginia Commonwealth University, Richmond, VA
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL
| |
Collapse
|
2
|
Zheng C, Li R, Zheng S, Fang H, Xu M, Zhong L. The knockdown of lncRNA DLGAP1-AS2 suppresses osteosarcoma progression by inhibiting aerobic glycolysis via the miR-451a/HK2 axis. Cancer Sci 2023; 114:4747-4762. [PMID: 37817462 PMCID: PMC10728003 DOI: 10.1111/cas.15989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Osteosarcoma (OS) is one of the most aggressive bone tumors worldwide. Emerging documents have shown that long noncoding RNAs (lncRNAs) elicit crucial regulatory functions in the process of tumorigenesis. LncRNA DLGAP1-AS2 is recognized as a regulator in several types of cancers, but its biological functions and molecular mechanisms in OS remain to be elucidated. RT-qPCR and In situ hybridization (ISH) were used to evaluate DLGAP1-AS2 expression in OS samples. Western blotting was used for the measurement of the protein levels of hexokinase 2 (HK2) and epithelial-mesenchymal transition (EMT)-related markers. The proliferation of OS cells was determined using a CCK-8 assay and EdU assay. TUNEL assay and flow cytometry were performed to assess OS cell apoptosis. Glucose metabolism in vitro assays were used. The binding relations among miR-451a, HK2, and DLGAP1-AS2 were validated by luciferase reporter assay. The cellular distribution of DLGAP1-AS2 in OS cells was determined by FISH and subcellular fractionation assays. Mouse xenograft models were established to perform the experiments in vivo. We found that DLGAP1-AS2 expression was upregulated in OS tissues and cells. Downregulation of DLGAP1-AS2 expression suppressed the malignancy of OS cells by restraining cell proliferation, the EMT process, invasiveness, migration, and aerobic glycolysis and accelerating apoptotic behaviors. Of note, silenced DLGAP1-AS2 restrained tumor growth and metastasis in vivo. However, DLGAP1-AS2 overexpression accelerated the progression of OS. We further found that DLGAP1-AS2 upregulation was induced by hypoxia and low glucose. Additionally, DLGAP1-AS2 bound to miR-451a to upregulate HK2 expression. Rescue assays revealed that the DLGAP1-AS2/miR-451a/HK2 axis contributed to OS cell malignancy by promoting aerobic glucose metabolism. Overall, these findings revealed a new regulatory pathway where DLGAP1-AS2 upregulated HK2 expression by sponging miR-451a to accelerate OS development.
Collapse
Affiliation(s)
- Changjun Zheng
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Ronghang Li
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Shuang Zheng
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Hongjuan Fang
- Department of Electric DiagnosticThe Fourth Hospital of Jilin UniversityChangchunChina
| | - Meng Xu
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| | - Lei Zhong
- Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
3
|
Predictive Study of the Active Ingredients and Potential Targets of Codonopsis pilosula for the Treatment of Osteosarcoma via Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1480925. [PMID: 34194515 PMCID: PMC8203350 DOI: 10.1155/2021/1480925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/29/2020] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Osteosarcoma (OS) is the most common type of primary bone tumor in children and adults. Dangshen (Codonopsis pilosula) is a traditional Chinese medicine commonly used in the treatment of OS worldwide. However, the molecular mechanisms of Dangshen in OS remain unclear. Hence, in this study, we aimed to systematically explore the underlying mechanisms of Dangshen in the treatment of OS. Our study adopted a network pharmacology approach, focusing on the identification of active ingredients, drug target prediction, gene collection, gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and other network tools. The network analysis identified 15 active compounds in Dangshen that were linked to 48 possible therapeutic targets related to OS. The results of the gene enrichment analysis show that Dangshen produces a therapeutic effect in OS likely by regulating multiple pathways associated with DNA damage, cell proliferation, apoptosis, invasion, and migration. Based on the network pharmacology approach, we successfully predicted the active compounds and their respective targets. In addition, we illustrated the molecular mechanisms that mediate the therapeutic effect of Dangshen in OS. These findings may aid in the development of novel targeted therapies for OS in the future.
Collapse
|
4
|
Jia Y, Liu Y, Han Z, Tian R. Identification of potential gene signatures associated with osteosarcoma by integrated bioinformatics analysis. PeerJ 2021; 9:e11496. [PMID: 34123594 PMCID: PMC8164836 DOI: 10.7717/peerj.11496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Background Osteosarcoma (OS) is the most primary malignant bone cancer in children and adolescents with a high mortality rate. This work aims to screen novel potential gene signatures associated with OS by integrated microarray analysis of the Gene Expression Omnibus (GEO) database. Material and Methods The OS microarray datasets were searched and downloaded from GEO database to identify differentially expressed genes (DEGs) between OS and normal samples. Afterwards, the functional enrichment analysis, protein–protein interaction (PPI) network analysis and transcription factor (TF)-target gene regulatory network were applied to uncover the biological function of DEGs. Finally, two published OS datasets (GSE39262 and GSE126209) were obtained from GEO database for evaluating the expression level and diagnostic values of key genes. Results In total 1,059 DEGs (569 up-regulated DEGs and 490 down-regulated DEGs) between OS and normal samples were screened. Functional analysis showed that these DEGs were markedly enriched in 214 GO terms and 54 KEGG pathways such as pathways in cancer. Five genes (CAMP, METTL7A, TCN1, LTF and CXCL12) acted as hub genes in PPI network. Besides, METTL7A, CYP4F3, TCN1, LTF and NETO2 were key genes in TF-gene network. Moreover, Pax-6 regulated four key genes (TCN1, CYP4F3, NETO2 and CXCL12). The expression levels of four genes (METTL7A, TCN1, CXCL12 and NETO2) in GSE39262 set were consistent with our integration analysis. The expression levels of two genes (CXCL12 and NETO2) in GSE126209 set were consistent with our integration analysis. ROC analysis of GSE39262 set revealed that CYP4F3, CXCL12, METTL7A, TCN1 and NETO2 had good diagnostic values for OS patients. ROC analysis of GSE126209 set revealed that CXCL12, METTL7A, TCN1 and NETO2 had good diagnostic values for OS patients.
Collapse
Affiliation(s)
- Yutao Jia
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhihua Han
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Rong Tian
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
5
|
García Muro AM, García Ruvalcaba A, Rizo de la Torre LDC, Sánchez López JY. Role of the BMP6 protein in breast cancer and other types of cancer. Growth Factors 2021; 39:1-13. [PMID: 34706618 DOI: 10.1080/08977194.2021.1994964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The BMP6 protein (Bone Morphogenetic Protein 6) is part of the superfamily of transforming growth factor-beta (TGF-β) ligands, participates in iron homeostasis, inhibits invasion by increasing adhesions and cell-cell type interactions and induces angiogenesis directly on vascular endothelial cells. BMP6 is coded by a tumor suppressor gene whose subexpression is related to the development and cancer progression; during neoplastic processes, methylation is the main mechanism by which gene silencing occurs. This work presents a review on the role of BMP6 protein in breast cancer (BC) and other types of cancer. The studies carried out to date suggest the participation of the BMP6 protein in the epithelial-mesenchymal transition (EMT) phenotype, cell growth and proliferation; however, these processes are affected in a variable way in the different types of cancer, the methylated CpG sites in BMP6 gene promoter, as well as the interaction with other proteins could be the cause of such variation.
Collapse
Affiliation(s)
- Andrea Marlene García Muro
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Azaria García Ruvalcaba
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | | | - Josefina Yoaly Sánchez López
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|
6
|
Smeester BA, Draper GM, Slipek NJ, Larsson AT, Stratton N, Pomeroy EJ, Becklin KL, Yamamoto K, Williams KB, Laoharawee K, Peterson JJ, Abrahante JE, Rathe SK, Mills LJ, Crosby MR, Hudson WA, Rahrmann EP, Largaespada DA, Moriarity BS. Implication of ZNF217 in Accelerating Tumor Development and Therapeutically Targeting ZNF217-Induced PI3K-AKT Signaling for the Treatment of Metastatic Osteosarcoma. Mol Cancer Ther 2020; 19:2528-2541. [PMID: 32999043 DOI: 10.1158/1535-7163.mct-20-0369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
We previously identified ZNF217 as an oncogenic driver of a subset of osteosarcomas using the Sleeping Beauty (SB) transposon system. Here, we followed up by investigating the genetic role of ZNF217 in osteosarcoma initiation and progression through the establishment of a novel genetically engineered mouse model, in vitro assays, orthotopic mouse studies, and paired these findings with preclinical studies using a small-molecule inhibitor. Throughout, we demonstrate that ZNF217 is coupled to numerous facets of osteosarcoma transformation, including proliferation, cell motility, and anchorage independent growth, and ultimately promoting osteosarcoma growth, progression, and metastasis in part through positive modulation of PI3K-AKT survival signaling. Pharmacologic blockade of AKT signaling with nucleoside analogue triciribine in ZNF217+ orthotopically injected osteosarcoma cell lines reduced tumor growth and metastasis. Our data demonstrate that triciribine treatment may be a relevant and efficacious therapeutic strategy for patients with osteosarcoma with ZNF217+ and p-AKT rich tumors. With the recent revitalization of triciribine for clinical studies in other solid cancers, our study provides a rationale for further evaluation preclinically with the purpose of clinical evaluation in patients with incurable, ZNF217+ osteosarcoma.
Collapse
Affiliation(s)
- Branden A Smeester
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Garrett M Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas J Slipek
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Alex T Larsson
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Natalie Stratton
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kelsie L Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kenta Yamamoto
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kyle B Williams
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph J Peterson
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | | | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Lauren J Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Margaret R Crosby
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Wendy A Hudson
- AHCSH Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Eric P Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England
| | | | | |
Collapse
|
7
|
Cao MD, Song YC, Yang ZM, Wang DW, Lin YM, Lu HD. Identification of Osteosarcoma Metastasis-Associated Gene Biomarkers and Potentially Targeted Drugs Based on Bioinformatic and Experimental Analysis. Onco Targets Ther 2020; 13:8095-8107. [PMID: 32884293 PMCID: PMC7434575 DOI: 10.2147/ott.s256617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Metastasis is the leading cause of death for patients with osteosarcoma (OS). In the present study, we explore the biomarkers for metastatic OS and provide potential therapeutic approaches. MATERIALS AND METHODS RNA-Seq data and clinical follow-up information were downloaded from TARGET and GEO databases. A Cox regression model was used to analyze metastatic events. L1000FWD, DGIdb, and CMap databases were used to identify potential drugs related to metastasis. Invasion and migration transwell assays and an adhesion assay were used to identify biological functions of genes. RESULTS A total of 15 metastasis-related signatures (MRSs) were associated with the prognosis based on the TARGET or GSE21257 cohorts, among which IL10RA and TLR7 genes were especially significant. In the DGIdb drug-gene interaction database, TLR7 and IFNGR1 were found to have potential interactions with drugs. After inhibiting the expression of TLR7, the migration, invasion, and adhesion ability of OS cells were significantly enhanced, which further promoted metastasis. CONCLUSION We identified a set of MRS that may be related to OS metastases. Among them, TLR7 plays a vital role and may be a potential target for OS metastasis treatment.
Collapse
Affiliation(s)
- Ming-De Cao
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai519000, Guangdong, People’s Republic of China
| | - Yan-Cheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510000, Guangdong, People’s Republic of China
| | - Zhong-Meng Yang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai519000, Guangdong, People’s Republic of China
| | - Da-Wei Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai519000, Guangdong, People’s Republic of China
| | - Yi-Ming Lin
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai519000, Guangdong, People’s Republic of China
| | - Hua-Ding Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai519000, Guangdong, People’s Republic of China
| |
Collapse
|