1
|
Dong Y, Cheng A, Zhou J, Guo J, Liu Y, Li X, Chen M, Hu D, Wu J. PRDX2 induces tumor immune evasion by modulating the HDAC3-Galectin-9 axis in lung adenocarcinoma cells. J Transl Med 2025; 23:81. [PMID: 39825365 PMCID: PMC11740609 DOI: 10.1186/s12967-024-05888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/14/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target. METHODS Mouse animal models to verify the effect of Conoidin A treatment on tumor growth and T cell infiltration. Flow cytometry and Western blot verified tumor cell apoptosis in the in vitro co-culture system as well as granzyme B and perforin expression in T cells. RNA-Seq was used to obtain the downstream immune molecule. si-RNA knockdown of Galectin-9 was co-cultured with T cells in vitro. Immunofluorescence and Western blot verified that PRDX2 regulates Galectin-9 expression through HDAC3. RESULTS PRDX2 expression was negatively correlated with CD8+ T cell expression in LUAD patients. Inhibition of PRDX2 significantly enhanced T-cell killing of LUAD cells and reduced tumor load in both in vitro and in vivo models. Mechanistically, Conoidin A or shRNA_PRDX2 decreased Galectin-9 expression by down-regulating the phosphorylation of HDAC3, consequently enhancing the infiltration and function of CD8+ T cells. CONCLUSIONS This study reveals the role of the PRDX2/HDAC3/Galectin-9 axis in LUAD immune escape and indicates Galectin-9 as a promising target for immunotherapy.
Collapse
Affiliation(s)
- Yunjia Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, 232000, China
| | - Anqi Cheng
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, 232000, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, 232000, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, 232000, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, 232000, China
| | - Xuan Li
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, 232000, China
| | - Maoqian Chen
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, 232000, China
| | - Dong Hu
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital, School of Medicine), Huainan, Anhui, 232000, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 232001, China.
| | - Jing Wu
- Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China.
| |
Collapse
|
2
|
Xue R, Fan Z, An Y. Knockdown of PRDX2 Inhibits the Proliferation, Growth, Migration, Invasion, and MMP9 Activity of Ewing's Sarcoma Cells Cultured In Vitro. Cancer Rep (Hoboken) 2024; 7:e2122. [PMID: 39234629 PMCID: PMC11375325 DOI: 10.1002/cnr2.2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Ewing's sarcoma (ES) is the second most common malignant primary bone tumor in children and adolescents. Peroxiredoxin 2 (PRDX2) is an antioxidant enzyme. AIMS Here, we investigated the role and mechanism of PRDX2 in the development of ES. METHODS AND RESULTS PRDX2 expression was knocked down in A673 and RDES cells by specific siRNA interference (si-PRDX2). Knockdown of PRDX2 strongly inhibited the proliferation, growth, migration, invasion, and MMP9 activity and induces apoptosis of A673 and RDES cells. si-PRDX2 significantly inhibited the phosphorylation of Akt and the expression of cyclin D1. The transcription factor that might regulate PRDX2 transcription was predicted with the JASPAR and UCSC databases, and analyzed using dual-luciferase and Chromatin co-immunoprecipitation experiments. SNAI1 could activate the transcription of PRDX2 by binding to predicted promoter binding site. CONCLUSION PRDX2 may be a potential therapeutic target for ES.
Collapse
Affiliation(s)
- Ruifeng Xue
- Department of Bone and Soft Tissue Tumors, Key Laboratory of Carcinogenesis and Translational ResearchPeking University Cancer Hospital & InstituteBeijingChina
| | - Zhengfu Fan
- Department of Bone and Soft Tissue Tumors, Key Laboratory of Carcinogenesis and Translational ResearchPeking University Cancer Hospital & InstituteBeijingChina
| | - Yunhe An
- Institute of Analysis and Testing, Beijng Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis)BeijingChina
| |
Collapse
|
3
|
Tang Y, Liu L, Jie R, Tang Y, Zhao X, Xu M, Chen M. Negative pressure wound therapy promotes wound healing of diabetic foot ulcers by up-regulating PRDX2 in wound margin tissue. Sci Rep 2023; 13:16192. [PMID: 37758743 PMCID: PMC10533814 DOI: 10.1038/s41598-023-42634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
To understand the changes in the peroxiredoxin-2 (PRDX2) expression level in the wound margin tissue (T-PRDX2) of patients with diabetic foot ulcer (DFU) before and after negative pressure wound therapy (NPWT). Additionally, the study aimed to explore the association between PRDX2 expression and the treatment outcome of DFUs to provide a new theoretical basis for revealing the mechanism of NPWT promoting the healing of DFUs. Fifty-six type 2 diabetes patients with foot ulcers undergoing NPWT (the DFU group) and 28 patients with chronic lower limb skin ulcers with normal glucose tolerance undergoing NPWT (the skin ulcer control [SUC] group) were included in the study. T-PRDX2 was detected using Western blotting, and the superoxide dismutase (SOD) activity and the malondialdehyde (MDA) and glutathione (GSH) levels were detected using a biochemical method. In addition, in vitro experiments were conducted to determine the effect of PRDX2 expression on normal human dermal fibroblast (NHDF) proliferation, migration, and apoptosis. Before NPWT, the DFU group exhibited a significantly lower T-PRDX2 expression level compared with the SUC group. After one week of NPWT, the T-PRDX2 expression level, SOD activity, and GSH content in the wound margin tissues of the DFU and SUC groups significantly increased compared with the before NPWT levels. Conversely, the inflammatory indicators (white blood cell, neutrophil percentage, C-reactive protein, and procalcitonin) and MDA content were significantly lower than the before NPWT levels. The expression changes of T-PRDX2 before and after NPWT in the DFU and SUC groups were positively correlated with the 4-week wound healing rate. In vitro experiments demonstrated that PRDX2 could alleviate the oxidative stress in NHDFs, thereby promoting their proliferation and migration, while reducing cell apoptosis. NPWT promotes DFU healing by increasing T-PRDX2, and changes in the T-PRDX2 might be associated with the therapeutic effect of NPWT.
Collapse
Affiliation(s)
- Ying Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China
| | - Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China
| | - Ruyan Jie
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China
| | - Yizhong Tang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China.
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei City, Anhui Province, People's Republic of China.
| |
Collapse
|
4
|
Ismailov ZB, Belykh ES, Chernykh AA, Udoratina AM, Kazakov DV, Rybak AV, Kerimova SN, Velegzhaninov IO. Systematic review of comparative transcriptomic studies of cellular resistance to genotoxic stress. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108467. [PMID: 37657754 DOI: 10.1016/j.mrrev.2023.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
The development of resistance by tumor cells to various types of therapy is a significant problem that decreases the effectiveness of oncology treatments. For more than two decades, comparative transcriptomic studies of tumor cells with different sensitivities to ionizing radiation and chemotherapeutic agents have been conducted in order to identify the causes and mechanisms underlying this phenomenon. However, the results of such studies have little in common and often contradict each other. We have assumed that a systematic analysis of a large number of such studies will provide new knowledge about the mechanisms of development of therapeutic resistance in tumor cells. Our comparison of 123 differentially expressed gene (DEG) lists published in 98 papers suggests a very low degree of consistency between the study results. Grouping the data by type of genotoxic agent and tumor type did not increase the similarity. The most frequently overexpressed genes were found to be those encoding the transport protein ABCB1 and the antiviral defense protein IFITM1. We put forward a hypothesis that the role played by the overexpression of the latter in the development of resistance may be associated not only with the stimulation of proliferation, but also with the limitation of exosomal communication and, as a result, with a decrease in the bystander effect. Among down regulated DEGs, BNIP3 was observed most frequently. The expression of BNIP3, together with BNIP3L, is often suppressed in cells resistant to non-platinum genotoxic chemotherapeutic agents, whereas it is increased in cells resistant to ionizing radiation. These observations are likely to be mediated by the binary effects of these gene products on survival, and regulation of apoptosis and autophagy. The combined data also show that even such obvious mechanisms as inhibition of apoptosis and increase of proliferation are not universal but show multidirectional changes.
Collapse
Affiliation(s)
- Z B Ismailov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - E S Belykh
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - A A Chernykh
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 50 Pervomaiskaya St., Syktyvkar 167982, Russia
| | - A M Udoratina
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - D V Kazakov
- Institute of Physics and Mathematics of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 4 Oplesnina St., Syktyvkar 167982, Russia
| | - A V Rybak
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - S N Kerimova
- State Medical Institution Komi Republican Oncology Center, 46 Nyuvchimskoe highway, Syktyvkar 167904, Russia
| | - I O Velegzhaninov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia.
| |
Collapse
|
5
|
Liu Y, Wang P, Hu W, Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed Pharmacother 2023; 164:114896. [PMID: 37210897 DOI: 10.1016/j.biopha.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
Oxidative stress is one of the hallmarks of cancer. Tumorigenesis and progression are accompanied by elevated reactive oxygen species (ROS) levels and adaptive elevation of antioxidant expression levels. Peroxiredoxins (PRDXs) are among the most important antioxidants and are widely distributed in a variety of cancers. PRDXs are involved in the regulation of a variety of tumor cell phenotypes, such as invasion, migration, epithelial-mesenchymal transition (EMT) and stemness. PRDXs are also associated with tumor cell resistance to cell death, such as apoptosis and ferroptosis. In addition, PRDXs are involved in the transduction of hypoxic signals in the TME and in the regulation of the function of other cellular components of the TME, such as cancer-associated fibroblasts (CAFs), natural killer (NK) cells and macrophages. This implies that PRDXs are promising targets for cancer treatment. Of course, further studies are needed to realize the clinical application of targeting PRDXs. In this review, we highlight the role of PRDXs in cancer, summarizing the basic features of PRDXs, their association with tumorigenesis, their expression and function in cancer, and their relationship with cancer therapeutic resistance.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Pu Wang
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
6
|
OTSUKA N, ISHIMARU K, MURAKAMI M, GOTO M, HIRATA A, SAKAI H. The immunohistochemical detection of peroxiredoxin 1 and 2 in canine spontaneous vascular endothelial tumors. J Vet Med Sci 2022; 84:914-923. [PMID: 35584951 PMCID: PMC9353087 DOI: 10.1292/jvms.22-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxiredoxin (PRDX) is an antioxidant enzyme family with six isoforms (PRDX1-6). The main function of PRDXs is to decrease cellular oxidative stress by reducing reactive oxygen species, such as hydrogen peroxide, to H2O. Recently, it has been reported that PRDXs are overexpressed in various malignant tumors in humans, and are involved in the development, proliferation, and metastasis of tumors. However, studies on the expression of PRDXs in tumors of animals are limited. Therefore, in the present study, we immunohistochemically investigated the expression of PRDX1 and 2 in spontaneous canine hemangiosarcoma (HSA) and hemangioma (HA), as well as in selected normal tissue and granulation tissue, including newly formed blood vessels. Although there were some exceptions, immunolocalization of PRDX1 and 2 in normal canine tissues was similar to those in humans, rats, or mice. In granulation tissue, angiogenic endothelial cells were strongly positive for PRDX1 and 2, whereas quiescent endothelial cells in mature vessels were negative. Both PRDX1 and 2 were significantly highly expressed in HSA compared to HA. There were no significant differences in the expression of PRDX1 and 2 among the subtypes and primary sites of HSA. These results suggest that PRDX1 and 2 may be involved in the angiogenic phenotypes of endothelial cells in granulation tissue as well as in the behavior in the malignant endothelial tumors.
Collapse
Affiliation(s)
- Narumi OTSUKA
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kairi ISHIMARU
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Mami MURAKAMI
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Minami GOTO
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Akihiro HIRATA
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroki SAKAI
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
7
|
PRDX2 Knockdown Inhibits Extracellular Matrix Synthesis of Chondrocytes by Inhibiting Wnt5a/YAP1/CTGF and Activating IL-6/JAK2/STAT3 Pathways in Deer Antler. Int J Mol Sci 2022; 23:ijms23095232. [PMID: 35563622 PMCID: PMC9103832 DOI: 10.3390/ijms23095232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Although peroxiredoxin 2 (PRDX2) plays a vital role in relieving oxidative stress, its physiological function in cartilage development remains almost unknown. In this study, we found that the expression of PRDX2 significantly increased in the chondrocytes compared with pre-chondrocytes. PRDX2 knockdown significantly decreased the expression of extracellular matrix (ECM) protein (Col2a and Aggrecan), which led to blocked cartilage formation. Moreover, PRDX2 knockdown also inhibited the expression of connective tissue growth factor (CTGF). CTGF is an important growth factor that regulates synthesis of ECM proteins. We explored the possible regulatory mechanism by which PRDX2 regulated the expression of CTGF. Our results demonstrated that PRDX2 knockdown downregulated the expression of CTGF by inhibiting Wnt5a/Yes-associated protein 1 (YAP1) pathway. In addition, PRDX2 knockdown promoted the expression of interleukin 6 (IL-6), indicating PRDX2 expression had an anti-inflammatory function during antler growth. Mechanistically, PRDX2 knockdown promoted cartilage matrix degradation by activating the IL-6-mediated Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) signaling pathway. These results reveal that PRDX2 is a potential regulator that promotes cartilage extracellular matrix synthesis.
Collapse
|
8
|
Xu D, Zhu X, Ren J, Huang S, Xiao Z, Jiang H, Tan Y. Quantitative proteomic analysis of cervical cancer based on TMT-labeled quantitative proteomics. J Proteomics 2022; 252:104453. [PMID: 34915198 DOI: 10.1016/j.jprot.2021.104453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Cervical cancer is the second most common gynecological malignancy, which immensely threatens the well-being of women. However, the pathogenesis of cervical cancer is still unclear. Using tandem mass tags-labeled quantitative proteomic technology and bioinformatics tools, we analyzed the exfoliated cervical cells from the normal and cervical cancer groups to establish a cancer-specific protein profile, thereby identifying key proteins related to cervical oncogenesis. When compared with the normal group, a total of 351 differentially expressed proteins were identified in the cervical cancer group, including 247 up-regulated and 104 down-regulated proteins. Gene ontology function annotation revealed that the differentially expressed proteins were mainly involved in the single-multicellular organism process, multicellular organismal process, and negative regulation of biological process. These proteins were discerned to play a role in the extracellular membrane-bounded organelle, exosome of cell components, protein binding, structural molecule activity, and enzyme binding of molecular functions. The results of Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment proved that these differentially expressed proteins were mainly involved in PI3K - Akt, ECM-receptor interaction, complement and coagulation cascades, and other signaling pathways. Particularly, peroxiredoxin-2 may be involved in cervical tumor oncogenesis through inhibition of apoptosis signaling. SIGNIFICANCE: In this study, we determined that the proteins of the cervical cancer group exhibited qualitative and quantitative changes, and a total of 351 differentially expressed proteins were identified. The functions and signaling pathways of these differentially expressed proteins have laid a theoretical foundation for elucidating the molecular mechanism of cervical cancer.
Collapse
Affiliation(s)
- Dianqin Xu
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Xiaoyu Zhu
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ji Ren
- School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shan Huang
- School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ziwen Xiao
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Hongmei Jiang
- School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yujie Tan
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Laboratory Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
9
|
PRDX2 Promotes the Proliferation and Metastasis of Non-Small Cell Lung Cancer In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8359860. [PMID: 32908916 PMCID: PMC7474358 DOI: 10.1155/2020/8359860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Purpose Previous studies have reported that the levels of PRDX2 were correlated with tumorigenicity, recurrence, and prognosis of patients with different cancers. We investigated the association between PRDX2 levels and the prognosis of lung cancer patients. We also measured PRDX2 expression of non-small cell lung cancer (NSCLC) cells and examined its roles in the proliferation and migration in vitro and in vivo. Methods We used the Kaplan–Meier plotter to analyze the survival of different levels of PRDX2 in lung cancer patients. The expression of PRDX2 in normal bronchial epithelial cell line and NSCLC cell lines was measured by qRT-PCR and western blot assays. Biological functions of NSCLC cells were detected by CCK8 and Transwell assays. We constructed tumor growth model using subcutaneously injection of nude mice and metastasis model by tail vein injection in vivo. The protein levels of proliferation related markers were measured by immunohistochemistry assay. Immunofluorescence method was used to detected EMT-related proteins. Results The high levels of PRDX2 were associated with bad prognosis in lung cancer patients, especially in patients with adenocarcinoma. The expression of PRDX2 in NSCLC cell lines was higher than normal bronchial epithelial cells. Knockdown of PRDX2 inhibited the proliferation, migration, and invasion in A549 cells, while overexpression of PRDX2 promoted the malignancy in NCI-H1299 cells in vitro. Silencing PRDX2 restrained tumor growth and repressed lung metastasis by EMT in vivo. Conclusion Our data indicates that PRDX2 functions as a protumor regulator and is involved in tumorigenesis and tumor progression of lung cancer.
Collapse
|
10
|
Silencing of PRDX2 Inhibits the Proliferation and Invasion of Non-Small Cell Lung Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1276328. [PMID: 32337219 PMCID: PMC7157786 DOI: 10.1155/2020/1276328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 2 (PRDX2), a member of the peroxiredoxin family of antioxidant enzymes, has been revealed to be an important player in cancer progression. However, the biological role of PRDX2 in the progression of non-small cell lung cancer (NSCLC) is poor reported. In the present study, the loss-of-function experiments were performed to investigate the specific role of PRDX2 in the growth and invasion of NSCLC. The results revealed that knockdown of PRDX2 by siRNA interference significantly suppressed the proliferation, migration, and invasion of A549 and H1299 cells, as well as diminished the activity of MMP9. Additionally, the decrease in PRDX2 expression significantly promoted apoptosis in NSCLC cells by downregulating expression of Bcl-2 and upregulating the expression of Bax, cleaved caspase 3 and cleaved caspase 9, but had no significant effect on the apoptosis of normal lung epithelial cells BEAS-2B. Moreover, PRDX2 inhibitor also inhibited the proliferation, migration, and invasion of A549 cells and promoted apoptosis. Further, our data demonstrated that silencing of PRDX2 markedly reduced the phosphorylation of Akt and mTOR and expression of downstream proteins Cyclin D1 and p70S6k. In conclusion, our findings indicate that PRDX2 exerts a prooncogenic role in the progression of NSCLC and might be a potential therapeutic target for NSCLC treatment.
Collapse
|