1
|
Liu X, Lyu L, Li J, Sen B, Bai M, Stajich JE, Collier JL, Wang G. Comparative Genomic Analyses of Cellulolytic Machinery Reveal Two Nutritional Strategies of Marine Labyrinthulomycetes Protists. Microbiol Spectr 2023; 11:e0424722. [PMID: 36744882 PMCID: PMC10101102 DOI: 10.1128/spectrum.04247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
Labyrinthulomycetes are a group of ubiquitous and diverse unicellular Stramenopiles and have long been known for their vital role in ocean carbon cycling. However, their ecological function from the perspective of organic matter degradation remains poorly understood. This study reports high-quality genomes of two newly isolated Labyrinthulomycetes strains, namely, Botryochytrium sp. strain S-28 and Oblongichytrium sp. strain S-429, and provides molecular analysis of their ecological functions using comparative genomics and a biochemical assay. Our results suggest that Labyrinthulomycetes may occupy multiple ecological niches in marine ecosystems because of the significant differences in gene function among different genera. Certain strains could degrade wheat bran independently by secreting cellulase. The key glycoside hydrolase families (GH1, GH5, and GH9) related to cellulase and the functional domains of carbohydrate-active enzymes (CAZymes) were more enriched in their genomes. This group can actively participate in marine biochemical cycles as decomposers. In contrast, other strains that could not produce cellulase may thrive as "leftover scavengers" and act as a source of nutrients to the higher-trophic-level plankton. In addition, our findings emphasize the dual roles of endoglucanase, acting as both exo- and endoglucanases, in the process of cellulose degradation. Using genomic, biochemical, and phylogenetic analyses, our study provides a broader insight into the nutritional patterns and ecological functions of Labyrinthulomycetes. IMPORTANCE Unicellular heterotrophic eukaryotes are an important component of marine ecosystems. However, their ecological functions and modes of nutrition remain largely unknown. Our current understanding of marine microbial ecology is incomplete without integrating these heterotrophic microeukaryotes into the food web models. This study focuses on the unicellular fungus-like protists Labyrinthulomycetes and provides two high-quality genomes of cellulase-producing Labyrinthulomycetes. Our study uncovers the basis of their cellulase production by deciphering the results of genomic, biochemical, and phylogenetic analyses. This study instigates a further investigation of the molecular mechanism of organic matter utilization by Labyrinthulomycetes in the world's oceans.
Collapse
Affiliation(s)
- Xiuping Liu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Lu Lyu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Mohan Bai
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, USA
| | - Jackie L. Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Das T, Ali F, Rahman MS. Cellulase activity of a novel bacterial strain Arthrobacter woluwensis TDS9: its application on bioconversion of paper mill sludge. J Genet Eng Biotechnol 2022; 20:87. [PMID: 35708781 PMCID: PMC9203635 DOI: 10.1186/s43141-022-00373-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/24/2022] [Indexed: 01/08/2023]
Abstract
Background Lignocellulosic biomasses produced from agriculture and forest-based industries are the cheapest or negative-cost biomass with a great potential for biotransformation to value-added bioproducts. Paper mill sludge, an important lignocellulosic biomass creates an environmental threat, which requires financial input for disposal. Thus, this study was aimed to isolate a novel bacterial strain capable of degrading cellulosic biomass including paper mill sludge to produce reducing sugar and other value-added bioproducts. Results A novel bacterial strain Arthrobacter woluwensis TDS9 isolated from the soil was screened for its cellulolytic activity using carboxymethyl cellulose (CMC) as the sole carbon source. The incubation period, temperature, pH, carbon, and nitrogen sources are the most important factors ruling the CMCase and sugar productions of the strain A. woluwensis TDS9, and an alkaline pH (pH 8.0) led to enhanced sugar production up to 1100.09 μg/mL after 72 h of incubation at 25°C in a medium containing 1.5% CMC and 1.25% beef extract. The optimal conditions for maximum CMCase activity were defined, and the potassium ion boosted the CMCase activity up to 1.06 U/mL when the enzymatic reaction was performed for 30 min at 50°C and pH 8 using CMC as a substrate. Moreover, the strain A. woluwensis TDS9 produced 433.33 μg/mL reducing sugar from 1% pretreated paper mill sludge. Significant alterations in the structural arrangement of cellulosic fiber of paper mill sludge observed under microscope after each step of chemical treatment process helped for loosening the cellulose fibers and increased the saccharification for enzymatic hydrolysis. Endoglucanase IV (33 KDa) and beta-glucosidase II (53 KDa) were identified in crude enzyme based on the zymogram analysis and substrate specificity. Conclusions The research has for the first time proved that this A. woluwensis TDS9 strain can efficiently convert cellulose. Therefore, the strain TDS9 could be a potential candidate for cellulase production in an industrial biotransformation process of paper mill sludge to produce reducing sugar. This sugar stream can be further used as a substrate to produce biofuels and other organic acids using another microorganism, which represents a greener alternative to add value to the paper production helping paper mill industries.
Collapse
Affiliation(s)
- Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md Shafiqur Rahman
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh. .,Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada.
| |
Collapse
|
3
|
Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 2018; 201:1-16. [PMID: 30478730 DOI: 10.1007/s00203-018-1602-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/04/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
Abstract
Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.
Collapse
|
4
|
Kim MH, Gao W, Chung CH, Lee JW. Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0035-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Construction of a recombinant Escherichia coli JM109/A-68 for production of carboxymethylcellulase and comparison of its production with its wild type, Bacillus velezensis A-68 in a pilot-scale bioreactor. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Suriya J, Bharathiraja S, Krishnan M, Manivasagan P, Kim SK. Extremozymes from Marine Actinobacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:43-66. [PMID: 27770863 DOI: 10.1016/bs.afnr.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Marine microorganisms that have the possibility to survive in diverse conditions such as extreme temperature, pH, pressure, and salinity are known as extremophiles. They produce biocatalysts so named as extremozymes that are active and stable at extreme conditions. These enzymes have numerous industrial applications due to its distinct properties. Till now, only a fraction of microorganisms on Earth have been exploited for screening of extremozymes. Novel techniques used for the cultivation and production of extremophiles, as well as cloning and overexpression of their genes in various expression systems, will pave the way to use these enzymes for chemical, food, pharmaceutical, and other industrial applications.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - M Krishnan
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | - S-K Kim
- Marine Bioprocess Research Center; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
7
|
Premalatha N, Gopal NO, Jose PA, Anandham R, Kwon SW. Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Front Microbiol 2015; 6:1046. [PMID: 26500615 PMCID: PMC4597110 DOI: 10.3389/fmicb.2015.01046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
Cellulase finds use in saccharification of lignocellulosic agroresidues to fermentable sugars which can be used for production of commercially important metabolites. This study reports endoglucanase (CMCase) production by Enhydrobacter sp. ACCA2. The CMCase activity of the strain ACCA2 was successively improved by optimization of range of physical and nutritional parameter in a set of non-statistical and statistical experiments. Initial non-statistical selection of carbon source, incubation time, temperature and pH resulted in 1.07 fold increase of CMCase activity. In a subsequent statistical method, response surface methodology, optimization of medium components such as carboxymethylcellulose, peptone, NaCl, MgSO4, K2HPO4, and (NH4)2SO4 yielded further increase up to 2.39 fold CMCase activity. The cellulolytic potential was evaluated in biomass saccharification with different plant materials and the results revealed that the enzyme produced by strain may have significant commercial values for industrial saccharification process. Moreover, this is the first report of cellulase production by an Enhydrobacter spp.
Collapse
Affiliation(s)
- Nagaiah Premalatha
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University Madurai, India
| | - Nellaiappan O Gopal
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University Madurai, India
| | - Polpass Arul Jose
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University Madurai, India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University Madurai, India
| | - Soon-Wo Kwon
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, Rural Development Administration Jeonju, South Korea
| |
Collapse
|
8
|
Gao W, Chung CH, Li J, Lee JW. Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0486-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Enhanced production of carboxymethylcellulase of Bacillus subtilis subsp. subtilis A-53 by a recombinant Escherichia coli JM109/A-53 with pH and temperature shifts. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0160-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Gao W, Kim HJ, Chung CH, Lee JW. Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen. J Microbiol 2014; 52:755-61. [DOI: 10.1007/s12275-014-4156-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 06/02/2014] [Indexed: 11/29/2022]
|
11
|
Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BIOMED RESEARCH INTERNATIONAL 2014; 2014:512497. [PMID: 25050355 PMCID: PMC4090499 DOI: 10.1155/2014/512497] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/08/2014] [Indexed: 11/17/2022]
Abstract
From different natural reserves in the subtropical region of China, a total of 245 aerobic bacterial strains were isolated on agar plates containing sugarcane bagasse pulp as the sole carbon source. Of the 245 strains, 22 showed hydrolyzing zones on agar plates containing carboxymethyl cellulose after Congo-red staining. Molecular identification showed that the 22 strains belonged to 10 different genera, with the Burkholderia genus exhibiting the highest strain diversity and accounting for 36.36% of all the 22 strains. Three isolates among the 22 strains showed higher carboxymethyl cellulase (CMCase) activity, and isolate ME27-1 exhibited the highest CMCase activity in liquid culture. The strain ME27-1 was identified as Paenibacillus terrae on the basis of 16S rRNA gene sequence analysis as well as physiological and biochemical properties. The optimum pH and temperature for CMCase activity produced by the strain ME27-1 were 5.5 and 50°C, respectively, and the enzyme was stable at a wide pH range of 5.0–9.5. A 12-fold improvement in the CMCase activity (2.08 U/mL) of ME27-1 was obtained under optimal conditions for CMCase production. Thus, this study provided further information about the diversity of cellulose-degrading bacteria in the subtropical region of China and found P. terrae ME27-1 to be highly cellulolytic.
Collapse
|
12
|
Kim BK, Kim HJ, Lee JW. Rapid Statistical Optimization of Cultural Conditions for Mass Production of Carboxymethylcellulase by a Newly Isolated Marine Bacterium, Bacillus velezensis A-68 from Rice Hulls. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.6.757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Cao W, Kim HW, Li J, Lee JW. Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.4.542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Cao W, Lee SU, Li J, Lee JW. Enhanced production of carboxymethylcellulase by Cellulophaga lytica LBH-14 in pilot-scale bioreactor under optimized conditions involved in dissolved oxygen. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-012-0219-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Song P, Chen C, Tian Q, Lin M, Huang H, Li S. Two-stage oxygen supply strategy for enhanced lipase production by Bacillus subtilis based on metabolic flux analysis. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran. Mol Biol Rep 2013; 40:3609-21. [DOI: 10.1007/s11033-012-2435-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/18/2012] [Indexed: 11/25/2022]
|
17
|
Kim YJ, Cao W, Lee YJ, Lee SU, Jeong JH, Lee JW. Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry. ACTA ACUST UNITED AC 2012. [DOI: 10.5352/jls.2012.22.10.1295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Kim HJ, Lee YJ, Gao W, Chung CH, Lee JW. Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical methods. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-011-0192-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|