1
|
Entrapment of the Fastest Known Carbonic Anhydrase with Biomimetic Silica and Its Application for CO 2 Sequestration. Polymers (Basel) 2021; 13:polym13152452. [PMID: 34372054 PMCID: PMC8347136 DOI: 10.3390/polym13152452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
Capturing and storing CO2 is of prime importance. The rate of CO2 sequestration is often limited by the hydration of CO2, which can be greatly accelerated by using carbonic anhydrase (CA, EC 4.2.1.1) as a catalyst. In order to improve the stability and reusability of CA, a silica-condensing peptide (R5) was fused with the fastest known CA from Sulfurihydrogenibium azorense (SazCA) to form R5-SazCA; the fusion protein successfully performed in vitro silicification. The entrapment efficiency reached 100% and the silicified form (R5-SazCA-SP) showed a high activity recovery of 91%. The residual activity of R5-SazCA-SP was two-fold higher than that of the free form when stored at 25 °C for 35 days; R5-SazCA-SP still retained 86% of its activity after 10 cycles of reuse. Comparing with an uncatalyzed reaction, the time required for the onset of CaCO3 formation was shortened by 43% and 33% with the addition of R5-SazCA and R5-SazCA-SP, respectively. R5-SazCA-SP shows great potential as a robust and efficient biocatalyst for CO2 sequestration because of its high activity, high stability, and reusability.
Collapse
|
2
|
Ren S, Chen R, Wu Z, Su S, Hou J, Yuan Y. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO 2 conversion. Colloids Surf B Biointerfaces 2021; 204:111779. [PMID: 33901810 DOI: 10.1016/j.colsurfb.2021.111779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
Collapse
Affiliation(s)
- Sizhu Ren
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China.
| | - Ruixue Chen
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin, No 29, 13th, Avenue, 300457, Tianjin, PR China
| | - Zhangfei Wu
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China
| | - Shan Su
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Jiaxi Hou
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Yanlin Yuan
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China.
| |
Collapse
|
3
|
Verma M, Bhaduri GA, Phani Kumar VS, Deshpande PA. Biomimetic Catalysis of CO 2 Hydration: A Materials Perspective. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Manju Verma
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Gaurav A. Bhaduri
- Department of Chemical Engineering, Indian Institute of Technology Jammu, Jammu and Kashmir, 181221, India
| | - V. Sai Phani Kumar
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
4
|
Nguyen TKM, Ki MR, Son RG, Kim KH, Hong J, Pack SP. A dual-functional peptide, Kpt from Ruegeria pomeroyi DSS-3 for protein purification and silica precipitation. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Yoshimoto M, Walde P. Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World J Microbiol Biotechnol 2018; 34:151. [PMID: 30259182 DOI: 10.1007/s11274-018-2536-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Carbonic anhydrase (CA) is an essential metalloenzyme in living systems for accelerating the hydration and dehydration of carbon dioxide. CA-catalyzed reactions can be applied in vitro for capturing industrially emitted gaseous carbon dioxide in aqueous solutions. To facilitate this type of practical application, the immobilization of CA on or inside solid or soft support materials is of great importance because the immobilization of enzymes in general offers the opportunity for enzyme recycling or long-term use in bioreactors. Moreover, the thermal/storage stability and reactivity of immobilized CA can be modulated through the physicochemical nature and structural characteristics of the support material used. This review focuses on (i) immobilization methods which have been applied so far, (ii) some of the characteristic features of immobilized forms of CA, and (iii) biotechnological applications of immobilized CA. The applications described not only include the CA-assisted capturing and sequestration of carbon dioxide, but also the CA-supported bioelectrochemical conversion of CO2 into organic molecules, and the detection of clinically important CA inhibitors. Furthermore, immobilized CA can be used in biomimetic materials synthesis involving cascade reactions, e.g. for bone regeneration based on calcium carbonate formation from urea with two consecutive reactions catalyzed by urease and CA.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube, 755-8611, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zurich, Switzerland
| |
Collapse
|
6
|
Bhagat C, Dudhagara P, Tank S. Trends, application and future prospectives of microbial carbonic anhydrase mediated carbonation process for CCUS. J Appl Microbiol 2017; 124:316-335. [PMID: 28921830 DOI: 10.1111/jam.13589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/17/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Abstract
Growing industrialization and the desire for a better economy in countries has accelerated the emission of greenhouse gases (GHGs), by more than the buffering capacity of the earth's atmosphere. Among the various GHGs, carbon dioxide occupies the first position in the anthroposphere and has detrimental effects on the ecosystem. For decarbonization, several non-biological methods of carbon capture, utilization and storage (CCUS) have been in use for the past few decades, but they are suffering from narrow applicability. Recently, CO2 emission and its disposal related problems have encouraged the implementation of bioprocessing to achieve a zero waste economy for a sustainable environment. Microbial carbonic anhydrase (CA) catalyses reversible CO2 hydration and forms metal carbonates that mimic the natural phenomenon of weathering/carbonation and is gaining merit for CCUS. Thus, the diversity and specificity of CAs from different micro-organisms could be explored for CCUS. In the literature, more than 50 different microbial CAs have been explored for mineral carbonation. Further, microbial CAs can be engineered for the mineral carbonation process to develop new technology. CA driven carbonation is encouraging due to its large storage capacity and favourable chemistry, allowing site-specific sequestration and reusable product formation for other industries. Moreover, carbonation based CCUS holds five-fold more sequestration capacity over the next 100 years. Thus, it is an eco-friendly, feasible, viable option and believed to be the impending technology for CCUS. Here, we attempt to examine the distribution of various types of microbial CAs with their potential applications and future direction for carbon capture. Although there are few key challenges in bio-based technology, they need to be addressed in order to commercialize the technology.
Collapse
Affiliation(s)
- C Bhagat
- Department of Biosciences (UGC-SAP-DRS-II), Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - P Dudhagara
- Department of Biosciences (UGC-SAP-DRS-II), Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - S Tank
- Department of Biosciences (UGC-SAP-DRS-II), Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
7
|
Hooks DO, Rehm BHA. Surface display of highly-stable Desulfovibrio vulgaris carbonic anhydrase on polyester beads for CO2 capture. Biotechnol Lett 2015; 37:1415-20. [DOI: 10.1007/s10529-015-1803-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|