1
|
Almeida GHDR, da Silva RS, Gibin MS, Gonzaga VHDS, dos Santos H, Igleisa RP, Fernandes LA, Fernandes IC, Nesiyama TNG, Sato F, Baesso ML, Hernandes L, Rinaldi JDC, Meirelles FV, Astolfi-Ferreira CS, Ferreira AJP, Carreira ACO. Region-Specific Decellularization of Porcine Uterine Tube Extracellular Matrix: A New Approach for Reproductive Tissue-Engineering Applications. Biomimetics (Basel) 2024; 9:382. [PMID: 39056823 PMCID: PMC11274565 DOI: 10.3390/biomimetics9070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The uterine tube extracellular matrix is a key component that regulates tubal tissue physiology, and it has a region-specific structural distribution, which is directly associated to its functions. Considering this, the application of biological matrices in culture systems is an interesting strategy to develop biomimetic tubal microenvironments and enhance their complexity. However, there are no established protocols to produce tubal biological matrices that consider the organ morphophysiology for such applications. Therefore, this study aimed to establish region-specific protocols to obtain decellularized scaffolds derived from porcine infundibulum, ampulla, and isthmus to provide suitable sources of biomaterials for tissue-engineering approaches. Porcine uterine tubes were decellularized in solutions of 0.1% SDS and 0.5% Triton X-100. The decellularization efficiency was evaluated by DAPI staining and DNA quantification. We analyzed the ECM composition and structure by optical and scanning electronic microscopy, FTIR, and Raman spectroscopy. DNA and DAPI assays validated the decellularization, presenting a significative reduction in cellular content. Structural and spectroscopy analyses revealed that the produced scaffolds remained well structured and with the ECM composition preserved. YS and HEK293 cells were used to attest cytocompatibility, allowing high cell viability rates and successful interaction with the scaffolds. These results suggest that such matrices are applicable for future biotechnological approaches in the reproductive field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Raquel Souza da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Mariana Sversut Gibin
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Victória Hellen de Souza Gonzaga
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Henrique dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Rebeca Piatniczka Igleisa
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Leticia Alves Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Iorrane Couto Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Thais Naomi Gonçalves Nesiyama
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Mauro Luciano Baesso
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá 87020-900, Brazil; (L.H.); (J.d.C.R.)
| | | | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Antonio José Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André 09040-902, Brazil
| |
Collapse
|
2
|
Almeida GHDR, da Silva-Júnior LN, Gibin MS, Dos Santos H, de Oliveira Horvath-Pereira B, Pinho LBM, Baesso ML, Sato F, Hernandes L, Long CR, Relly L, Miglino MA, Carreira ACO. Perfusion and Ultrasonication Produce a Decellularized Porcine Whole-Ovary Scaffold with a Preserved Microarchitecture. Cells 2023; 12:1864. [PMID: 37508528 PMCID: PMC10378497 DOI: 10.3390/cells12141864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 07/30/2023] Open
Abstract
The application of decellularized scaffolds for artificial tissue reconstruction has been an approach with great therapeutic potential in regenerative medicine. Recently, biomimetic ovarian tissue reconstruction was proposed to reestablish ovarian endocrine functions. Despite many decellularization methods proposed, there is no established protocol for whole ovaries by detergent perfusion that is able to preserve tissue macro and microstructure with higher efficiency. This generated biomaterial may have the potential to be applied for other purposes beyond reproduction and be translated to other areas in the tissue engineering field. Therefore, this study aimed to establish and standardize a protocol for porcine ovaries' decellularization based on detergent perfusion and ultrasonication to obtain functional whole-ovary scaffolds. For that, porcine ovaries (n = 5) were perfused with detergents (0.5% SDS and 1% Triton X-100) and submitted to an ultrasonication bath to produce acellular scaffolds. The decellularization efficiency was evaluated by DAPI staining and total genomic DNA quantification. ECM morphological evaluation was performed by histological, immunohistochemistry, and ultrastructural analyses. ECM physico-chemical composition was evaluated using FTIR and Raman spectroscopy. A cytocompatibility and cell adhesion assay using murine fibroblasts was performed. Results showed that the proposed method was able to remove cellular components efficiently. There was no significant ECM component loss in relation to native tissue, and the scaffolds were cytocompatible and allowed cell attachment. In conclusion, the proposed decellularization protocol produced whole-ovaries scaffolds with preserved ECM composition and great potential for application in tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Henrique Dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | | | - Leticia Beatriz Mazo Pinho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | | | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringa, Maringá 87020-900, Brazil
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Luciana Relly
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
3
|
Shaik MI, Md Nor IN, Sarbon NM. Effect of Extraction Time on the Extractability and Physicochemical Properties of Pepsin—Soluble Collagen (PCS) from the Skin of Silver Catfish (Pangasius sp.). Gels 2023; 9:gels9040300. [PMID: 37102912 PMCID: PMC10137522 DOI: 10.3390/gels9040300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The current study aimed to determine the effects of extraction time on the extractability and physicochemical properties of collagen from the skin of silver catfish (Pangasius sp.). Pepsin soluble collagen (PSC) was extracted for 24 and 48 h and analysed in terms of chemical composition, solubility, functional group, microstructure, and rheological properties. The yields of PSC at 24 h and 48 h extraction time were 23.64% and 26.43%, respectively. The chemical composition exhibited significant differences, with PSC extracted at 24 h showing better moisture, protein, fat, and ash content. Both collagen extractions indicated the highest solubility at pH 5. In addition, both collagen extractions exhibited Amide A, I, II, and III as fingerprint regions for collagen structure. The morphology of the extracted collagen appeared porous with a fibril structure. The dynamic viscoelastic measurements of complex viscosity (η*) and loss tangent (tan δ) decreased as temperature increased, and the viscosity increased exponentially as the frequency increased, whereas the loss tangent decreased. In conclusion, PSC extracted at 24 h showed similar extractability to that extracted at 48 h but with a better chemical composition and shorter extraction time. Therefore, 24 h is the best extraction time for PSC from silver catfish skin.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Intan Nordiana Md Nor
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| |
Collapse
|
4
|
Yuwono LA, Siswanto, Sari M, Yusuf Y, Suciati T, Sari YW, Che Abdullah CA, Aminatun. Fabrication and characterization of hydroxyapatite-polycaprolactone-collagen bone scaffold by electrospun nanofiber. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Siswanto
- Department of Physics, Universitas Airlangga, Surabaya, Indonesia
| | - Mona Sari
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yusril Yusuf
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Suciati
- Department of Pharmaceutics, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Che Azurahanim Che Abdullah
- Nanomaterial Synthesis and Characterization Lab, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Aminatun
- Department of Physics, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F. A review on recent advances and applications of fish collagen. Crit Rev Food Sci Nutr 2020; 61:1027-1037. [PMID: 32345036 DOI: 10.1080/10408398.2020.1751585] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
During the processing of the fishery resources, the significant portion is either discarded or used to produce low-value fish meal and oil. However, the discarded portion is the rich source of valuable proteins such as collagen, vitamins, minerals, and other bioactive compounds. Collagen is a vital protein in the living body as a component of a fibrous structural protein in the extracellular matrix, connective tissue and building block of bones, tendons, skin, hair, nails, cartilage and joints. In recent years, the use of fish collagen as an increasingly valuable biomaterial has drawn considerable attention from biomedical researchers, owing to its enhanced physicochemical properties, stability and mechanical strength, biocompatibility and biodegradability. This review focuses on summarizing the growing role of fish collagen for biomedical applications. Similarly, the recent advances in various biomedical applications of fish collagen, including wound healing, tissue engineering and regeneration, drug delivery, cell culture and other therapeutic applications, are discussed in detail. These applications signify the commercial importance of fish collagen for the fishing industry, food processors and biomedical sector.
Collapse
Affiliation(s)
- Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Zohaib Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan.,School of Materials Science and Engineering, Gwangju Institute of Science and Technology, (GIST), Gwangju, Republic of Korea
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra, KPK, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering, School of Mechanical & Manufacturing Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Fazli Wahid
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Haripur, Pakistan
| |
Collapse
|
6
|
Oliveira VDM, Neri RCDA, Monte FTDD, Roberto NA, Costa HMS, Assis CRD, Santos JF, Bezerra RS, Porto ALF. Crosslink-free collagen from Cichla ocellaris: Structural characterization by FT-IR spectroscopy and densitometric evaluation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Comparison of characteristics and fibril-forming ability of skin collagen from barramundi (Lates calcarifer) and tilapia (Oreochromis niloticus). Int J Biol Macromol 2018; 107:549-559. [DOI: 10.1016/j.ijbiomac.2017.09.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/29/2017] [Accepted: 09/10/2017] [Indexed: 11/24/2022]
|
8
|
Bayón B, Berti IR, Gagneten AM, Castro GR. Biopolymers from Wastes to High-Value Products in Biomedicine. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7431-8_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Muthumari K, Anand M, Maruthupandy M. Collagen Extract from Marine Finfish Scales as a Potential Mosquito Larvicide. Protein J 2017; 35:391-400. [PMID: 27804059 DOI: 10.1007/s10930-016-9685-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collagen is a peptide being utilized in medical, health care, nutrient and decorative industry. Marine fish scales are one of the good sources of collagen, which is extracted using the advanced enzymatic digestion method. Scales of Sardinella longiceps (Oil Sardine) have a high proportion of collagen. This product is well absorbed with broad adaptive values that encourage the inclusion of nutriments. In this paper, we have performed the isolation and characterization of collagen from S. longiceps fish scales. The unnecessary proteins on the surface of fish scales was removed by demineralization process. The fish scale collagen was extracted in two different methods: acid (acetic acid) and enzymatic (pepsin) technique. The molecular mass of the extracted collagen was determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The absorption spectra of the extracted collagen was measured to estimate its amino acid (tyrosine) content. Fourier transform infrared (FTIR) spectrum showed the existence of bands corresponding to the collagen extracted from S. longiceps fish scale and the crystallinity of extracted collagen was obtained using X-ray diffraction (XRD) analysis. The morphological micrograph was also analyzed by scanning electron microscope (SEM). The anti-larval effect of the collagen extract was determined using mosquito larvae of Aedes aegypti (Ae. aegypti) and the activity was statistically significant.
Collapse
Affiliation(s)
- K Muthumari
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - M Anand
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| | - M Maruthupandy
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| |
Collapse
|
10
|
Zhang Y, Ma L, Cai L, Liu Y, Li J. Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials. ULTRASONICS SONOCHEMISTRY 2017; 36:88-94. [PMID: 28069243 DOI: 10.1016/j.ultsonch.2016.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
The combined effect of ultrasonic and alkali pretreatment for the hydrolysis of native collagenous materials and release of ACE inhibitory peptides was investigated. The ultrasonic and alkali pretreatment of pig skin could accelerate the release of the ACE inhibitory peptides from the triple helix of collagen in early stages of hydrolysis. Furthermore, the pretreatment could also accelerate collapse of the triple helix and release more ACE inhibitory peptides during hydrolysis than collagen samples left untreated. Compared to untreated and alkali pretreated samples, the ultrasonic and alkali pretreatment could decrease the thermostability of pig skin significantly (P<0.05) because the ultrasonic and alkali pretreatment could weaken hydrogen bonds and break parts of covalent bonds in collagen, leading to damage of the triple helical structure in collagen. Therefore, the ultrasonic and alkali pretreatment could damage the triple helical structure of collagen in native collagenous materials and expose more inner sites for subsequent hydrolysis, and it could be a potential way to prepare ACE inhibitory peptides effectively from collagen-rich raw material.
Collapse
Affiliation(s)
- Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400716, China.
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400716, China
| | - Luyun Cai
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China
| | - Yi Liu
- College of Food Science, Southwest University, Chongqing 400716, China
| | - Jianrong Li
- College of Food Science, Southwest University, Chongqing 400716, China; College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China.
| |
Collapse
|
11
|
Cho SH, Kang G, Seong P, Kang S, Sun C, Jang S, Cheong JH, Park B, Hwang I. Meat quality traits as a function of cow maturity. Anim Sci J 2017; 88:781-789. [PMID: 27677427 DOI: 10.1111/asj.12635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/13/2016] [Accepted: 02/10/2016] [Indexed: 12/18/2022]
Abstract
To investigate the physico-chemical and sensory properties of striploin muscles, 90 Hanwoo carcasses (QG 1+ ) were randomly selected within six maturity levels (4 to 9 according to age in months). Results demonstrated that the protein contents at maturity levels 4 and 5 were significantly higher than 9. No significant difference in fat, moisture and collagen contents were found at different maturity levels (P > 0.05). The quantity of collagen type I and ratio of type I to III were observed at higher maturity levels; collagen type III showed significantly high levels (P > 0.05) at low maturity and decreased with increase in maturity levels. Warner-Bratzler shear force (WBSF) was significantly lower in groups 4 to 6, whereas water holding capacity (WHC) was significantly higher than maturity level 8 and 9 groups (P < 0.05). There were no significant differences in cooking loss among the maturity level groups (P > 0.05). Color properties, L* values of striploin muscle from maturity level 4 were significantly different from level 9 (P < 0.05). Sensory evaluation at level 4-6 groups had significantly higher tenderness and overall likeness scores than level 9 (P < 0.05). The maturity levels were significantly correlated with age, fat, protein content, WHC, WBSF, cooking loss, CIE L* values and sensory properties like tenderness, juiciness, flavor-likeness and overall likeness.
Collapse
Affiliation(s)
- Soo Hyun Cho
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Suwon, Republic of Korea
| | - Geunho Kang
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Suwon, Republic of Korea
| | - Pilnam Seong
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Suwon, Republic of Korea
| | - Sunmoon Kang
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Suwon, Republic of Korea
| | - Changwan Sun
- Korea Institute for Animal Products Quality Evaluation, Sejong, Republic of Korea
| | - Sunsik Jang
- Hanwoo Research Center, Pyung Chang Gun, Kwang Wondo, Republic of Korea
| | - Jin Hyung Cheong
- Korea Institute for Animal Products Quality Evaluation, Sejong, Republic of Korea
| | - Beomyoung Park
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Suwon, Republic of Korea
| | - Inho Hwang
- Department of Animal Science and Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
12
|
Lin S, Xue YP, San E, Keong TC, Chen L, Zheng YG. Extraction and Characterization of Pepsin Soluble Collagen from the Body Wall of Sea Cucumber Acaudina leucoprocta. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2016.1222560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Saijun Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Enli San
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Tan Chee Keong
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Lifang Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Zou Y, Wang L, Cai P, Li P, Zhang M, Sun Z, Sun C, Xu W, Wang D. Effect of ultrasound assisted extraction on the physicochemical and functional properties of collagen from soft-shelled turtle calipash. Int J Biol Macromol 2017; 105:1602-1610. [PMID: 28267613 DOI: 10.1016/j.ijbiomac.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/03/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to evaluate the physicochemical and functional properties of acid-soluble collagen by ultrasound assisted extraction (UASC) from calipash of soft-shelled turtle (Pelodiscus sinensis). The results showed the collagen content was increased by 16.3% in UASC over the collagen from the conventional extraction (ASC). Both ASC and UASC contained a moderate amount of imino acid (197 and 216 residues/1000 residues, respectively) and hydrophobic amino acid (353 and 391 residues/1000 residues, respectively) in amino acid composition. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses confirmed that the ultrasound treatment did not disrupt the triple-stranded helical structures in UASC. UASC had higher thermal stability compared with ASC by viscosity and differential scanning calorimetry (DSC) measurements, therefore, UASC might have the advantage to be used. In dynamic elastic behavior measurement, UASC showed a larger elasticity than ASC. With a mild modification by ultrasound, UASC had superior functional properties to ASC, including water/oil absorption capacity, water-holding capacity, emulsifying properties and foaming properties. These results suggested that UASC from the soft-shelled turtle calipash had a potential to be used widely in food, medicine, cosmetics and biomedical materials.
Collapse
Affiliation(s)
- Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Li Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Panpan Cai
- Ginling College, Nanjing Normal University, Nanjing, 210024, PR China
| | - Pengpeng Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Muhan Zhang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Zhilan Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Chong Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
14
|
Kozlowska J, Sionkowska A, Skopinska-Wisniewska J, Piechowicz K. Northern pike ( Esox lucius ) collagen: Extraction, characterization and potential application. Int J Biol Macromol 2015; 81:220-7. [DOI: 10.1016/j.ijbiomac.2015.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/26/2022]
|