1
|
Parker W, Taylor A, Razdan A, Escarce J, Crook N. Enabling technologies for in situ biomanufacturing using probiotic yeast. Adv Drug Deliv Rev 2025; 223:115605. [PMID: 40383233 DOI: 10.1016/j.addr.2025.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Saccharomyces boulardii (Sb) is a Generally Regarded As Safe (GRAS) probiotic yeast currently used to alleviate symptoms from various gastrointestinal diseases. Sb is a promising platform for probiotic and biotherapeutic engineering as it is the only probiotic eukaryote and carries with it a unique set of advantages compared to bacterial strains, including resistance to phage, high protein secretion abilities, and intrinsic resistance to antibiotics. While engineered Sb has not been studied as extensively as its close relative Saccharomyces cerevisiae (Sc), many genetic engineering tools developed for Sc have also shown promise in Sb. In this review, we address recent research to develop tools for genetic engineering, colonization modulation, biomarker sensing, and drug production in Sb. Ongoing efforts, especially those that overcome gut-specific challenges to engineered performance, are highlighted as they advance this chassis as a scalable platform for treating gastrointestinal diseases.
Collapse
Affiliation(s)
- William Parker
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Amanda Taylor
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Aryan Razdan
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose Escarce
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Nathan Crook
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Tomičić Z, Šarić L, Tomičić R. Novel Insights in the Application of Probiotic Yeast Saccharomyces boulardii in Dairy Products and Health Promotion. Foods 2024; 13:2866. [PMID: 39335795 PMCID: PMC11431368 DOI: 10.3390/foods13182866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Probiotic organisms are increasingly being incorporated into foods in order to develop products to prevent and reduce many diseases. Saccharomyces boulardii, a probiotic yeast with unique properties, such as viability over a wide pH range, antibiotic resistance, and the ability to reach a steady state, has an advantage over bacterial probiotics. The present review highlights the potential application of S. boulardii in functional fermented dairy products and the genetic engineering of this probiotic microorganism as a therapeutic agent for the treatment of various infectious diseases. It was found that probiotic yeast stimulates the growth of lactic acid bacteria in dairy products, creating favorable conditions and positively affecting the product's sensory characteristics. Moreover, its viability of more than 106 cfu/mL at the end of the yogurt shelf life confirms its probiotic effect. On the other hand, there is a growing interest in the design of probiotic strains to improve their characteristics and fill existing gaps in their spectrum of action such as the inhibition of some bacterial toxins, as well as anti-inflammatory and immunomodulatory effects. The strengthening of immune functions and effective therapies against various diseases by S. boulardii was confirmed. However, considering this yeast species' potential, further research is necessary to accurately determine the functional properties in terms of incorporation into food matrices and from the aspect of health and well-being claims.
Collapse
Affiliation(s)
- Zorica Tomičić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ružica Tomičić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Ren H, Yin A, Wu P, Zhou H, Zhou J, Yu Y, Lu H. Establishment of a Cre-loxP System Based on a Leaky LAC4 Promoter and an Unstable panARS Element in Kluyveromyces marxianus. Microorganisms 2022; 10:microorganisms10061240. [PMID: 35744758 PMCID: PMC9227491 DOI: 10.3390/microorganisms10061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The Cre-loxP system produces structural variations, such as deletion, duplication, inversion and translocation, at specific loci and induces chromosomal rearrangements in the genome. To achieve chromosomal rearrangements in Kluyveromyces marxianus, the positions and sequences of centromeres were identified in this species for the first time. Next, a Cre-loxP system was established in K. marxianus. In this system, the Cre recombinase was expressed from a leaky LAC4 promoter in a plasmid to alleviate the cytotoxicity of Cre, and the unstable plasmid contained a panARS element to facilitate the clearance of the plasmid from the cells. By using LAC4 as a reporter gene, the recombination frequencies between loxP sites or loxPsym sites were 99% and 73%, respectively. A K. marxianus strain containing 16 loxPsym sites in the genome was constructed. The recombination frequency of large-scale chromosomal rearrangements between 16 loxPsym sites was up to 38.9%. Our study provides valuable information and tools for studying chromosomal structures and functions in K. marxianus.
Collapse
Affiliation(s)
- Haiyan Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Anqi Yin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Pingping Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Huanyu Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Y.Y.); (H.L.)
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China
- Correspondence: (Y.Y.); (H.L.)
| |
Collapse
|
4
|
Roohvand F, Ehsani P, Abdollahpour-Alitappeh M, Shokri M, Kossari N. Biomedical applications of yeasts - a patent view, part two: era of humanized yeasts and expanded applications. Expert Opin Ther Pat 2020; 30:609-631. [PMID: 32529867 DOI: 10.1080/13543776.2020.1781816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Yeast humanization, ranging from a simple point mutation to substitution of yeast gene(s) or even a complete pathway by human counterparts has enormously expanded yeast biomedical applications. AREAS COVERED General and patent-oriented insights into the application of native and humanized yeasts for production of human glycoproteins (gps) and antibodies (Abs), toxicity/mutagenicity assays, treatments of gastrointestinal (GI) disorders and potential drug delivery as a probiotic (with emphasis on Saccharomyces bulardii) and studies on human diseases/cancers and screening effective drugs. EXPERT OPINION Humanized yeasts cover the classical advantageous features of a 'microbial eukaryote' together with advanced human cellular processes. These unique characteristics would permit their use in the production of functional and stable therapeutic gps and Abs in lower prices compared to mammalian (CHO) production-based systems. Availability of yeasts humanized for cytochrome P450 s will expand their application in metabolism-related chemical toxicity assays. Engineered S. bulardii for expression of human proteins might expand its application by synergistically combining the probiotic activity with the treatment of metabolic diseases such as phenylketonuria via GI-delivery. Yeast models of human diseases will facilitate rapid functional/phenotypic characterization of the disease-producing mutant genes and screening of the therapeutic compounds using yeast-based high-throughput research techniques (Yeast one/two hybrid systems) and viability assays.
Collapse
Affiliation(s)
- Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran , Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran , Tehran, Iran
| | | | - Mehdi Shokri
- ; Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Niloufar Kossari
- ; Universite de Versailles, Service de ne 'phrologie-transplantation re'nale, Hopital Foch, 40 rue Worth, Suresnes , Paris, France
| |
Collapse
|
5
|
Genome editing of different strains of Aureobasidium melanogenum using an efficient Cre/loxp site-specific recombination system. Fungal Biol 2019; 123:723-731. [DOI: 10.1016/j.funbio.2019.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023]
|
6
|
Bagherpour G, Ghasemi H, Zand B, Zarei N, Roohvand F, Ardakani EM, Azizi M, Khalaj V. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice. Front Microbiol 2018; 9:723. [PMID: 29706942 PMCID: PMC5908956 DOI: 10.3389/fmicb.2018.00723] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Saccharomyces boulardii, a subspecies of Saccharomyces cerevisiae, is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi®) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3- S. boulardii. To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group (P < 0.001) compared to control groups (receiving wild type S. boulardii or PBS), and the fecal IgA titer was significantly higher in test group (P < 0.05) than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii, as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins.
Collapse
Affiliation(s)
- Ghasem Bagherpour
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Hosnie Ghasemi
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Bahare Zand
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Najmeh Zarei
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Esmat M Ardakani
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Azizi
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Wu D, Chen Y, Li C, Lu J, Liu Y, Zhang C, Dong J, Xiao D. Construction of self-cloning industrial brewer's yeast withSOD1gene insertion intoPEP4prosequence locus by homologous recombination. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Deguang Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory; College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area; Tianjin 300457 China
- Department of Brewing Engineering; Moutai College; Renhuai 564500 China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory; College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area; Tianjin 300457 China
| | - Chaoqun Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory; College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area; Tianjin 300457 China
| | - Jun Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory; College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area; Tianjin 300457 China
| | - Yanwen Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory; College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area; Tianjin 300457 China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory; College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area; Tianjin 300457 China
| | - Jian Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory; College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area; Tianjin 300457 China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory; College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area; Tianjin 300457 China
| |
Collapse
|
8
|
Metabolic Engineering of Probiotic Saccharomyces boulardii. Appl Environ Microbiol 2016; 82:2280-2287. [PMID: 26850302 DOI: 10.1128/aem.00057-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/30/2016] [Indexed: 01/23/2023] Open
Abstract
Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii.
Collapse
|