1
|
Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies. MINERALS 2022. [DOI: 10.3390/min12050506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mining has advanced primarily through the use of two strategies: pyrometallurgy and hydrometallurgy. Both have been used successfully to extract valuable metals from ore deposits. These strategies, without a doubt, harm the environment. Furthermore, due to decades of excessive mining, there has been a global decline in high-grade ores. This has resulted in a decrease in valuable metal supply, which has prompted a reconsideration of these traditional strategies, as the industry faces the current challenge of accessing the highly sought-after valuable metals from low-grade ores. This review outlines these challenges in detail, provides insights into metal recovery issues, and describes technological advances being made to address the issues associated with dealing with low-grade metals. It also discusses the pragmatic paradigm shift that necessitates the use of biotechnological solutions provided by bioleaching, particularly its environmental friendliness. However, it goes on to criticize the shortcomings of bioleaching while highlighting the potential solutions provided by a bespoke approach that integrates research applications from omics technologies and their applications in the adaptation of bioleaching microorganisms and their interaction with the harsh environments associated with metal ore degradation.
Collapse
|
2
|
Copper and Zinc Recovery from Sulfide Concentrate by Novel Artificial Microbial Community. METALS 2021. [DOI: 10.3390/met12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exploring efficient methods to enhance leaching efficiency is critical for bioleaching technology to deal with sulfide concentrate. In our study, a novel artificial microbial community was established to augment the bioleaching efficiency and recovery of copper (Cu) and zinc (Zn). The optimum parameters in bioleaching experiments were explored according to compare a series of conditions from gradient experiments: the pH value was 1.2, temperature was 45 °C, and rotation speed was 160 r/min, which were different with pure microorganism growth conditions. Under optimal conditions, the result of recovery for Cu and Zn indicated that the average leaching rate reached to 80% and 100% respectively, which almost increased 1.8 times and 1.2 times more than control (aseptic condition) group. Therefore, this method of Cu and Zn recovery using a new-type artificial microbial community is expected to be an environmentally-friendly and efficient bioleaching technology solution, which has the potential of large-field engineering application in the future.
Collapse
|
3
|
Nguyen TH, Won S, Ha MG, Nguyen DD, Kang HY. Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings. CHEMOSPHERE 2021; 282:131108. [PMID: 34119723 DOI: 10.1016/j.chemosphere.2021.131108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Owing to industrial evolution, a huge mass of toxic metals, including Co, Cu, Cr, Mn, Ni, Pb, and Zn, and metalloids, such as As and Sb, has inevitably been released into the natural environment and accumulated in soils or sediments. Along with modern industrialization, many mineral mines have been explored and exploited to provide materials for industries. Mining industries also generate a vast amount of waste, such as mine tailings, which contain a high concentration of toxic metals and metalloids. Due to the low economic status, a majority of mine tailings are simply disposed into the surrounding environments, without any treatment. The mobilization and migration of toxic metals and metalloids from soils, sediments, and mining wastes to water systems via natural weathering processes put both the ecological system and human health at high risk. Considering both economic and environmental aspects, bioleaching is a preferable option for removing the toxic metals and metalloids because of its low cost and environmental safety. This chapter reviews the recent approaches of bioleaching for removing toxic metals and metalloids from soils, sediments, and mining wastes. The comparison between bioleaching and chemical leaching of various waste sources is also discussed in terms of efficiency and environmental safety. Additionally, the advanced perspectives of bioleaching for environmental remediation with consideration of other influencing factors are reviewed for future studies and applications.
Collapse
Affiliation(s)
| | - Sangmin Won
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| | - Myung-Gyu Ha
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Effect of Indigenous Microbial Consortium on Bioleaching of Arsenic from Contaminated Soil by Shewanella putrefaciens. SUSTAINABILITY 2020. [DOI: 10.3390/su12083286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of indigenous microbial consortium on removal of As from As-contaminated soil using an Fe(III)-reducing bacterium Shewanella putrefaciens were investigated under circumneutral pH condition. Sequential extraction of As revealed that more than 30% of As was associated with Fe(III)-(oxy)hydroxides in the soil. Bioleaching experiments were conducted anaerobically with a supply of lactate as a carbon source. The highest As removal efficiency (57.5%) was obtained when S. putrefaciens and indigenous bacterial consortium coexisted in the soil. S. putrefaciens and indigenous bacteria solely removed 30.1% and 16.4% of As from the soil, respectively. The combination of S. putrefaciens and indigenous bacteria led to a higher amount of labile As after microbial dissolution of Fe(III)-(oxy)hydroxides. After microbial treatment, soil quality represented by pH and organic content appeared to be preserved. The results indicated that the ecological and physiological understanding of the indigenous microbiome might be important for the efficient application of bioleaching technology to remove As from contaminated soils.
Collapse
|
5
|
Marra A, Cesaro A, Belgiorno V. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19897-19905. [PMID: 31090011 DOI: 10.1007/s11356-019-05406-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Due to the increasing demand of metals by industry and the limited availability of natural resources, the secondary supply of these elements from discarded products, such as waste electrical and electronic equipment (WEEE), is an important strategy for pursuing a sustainable development. Nevertheless, the complex and heterogeneous composition of this waste stream stands as one of the main drawbacks in the definition of innovative recovery processes. This study investigated the recovery potential of a multi-step leaching process to extract the strategic metals, namely precious metals and rare earth elements (REEs), from the dust produced during the industrial shredding treatment of WEEE. Using a first double-oxidative step with sulfuric acid, most rare earth elements contained in the dust were dissolved at high percentages. Moreover, around 50% of gold was extracted in a second leaching step using 0.25 M thiourea, in a solid to liquid ratio of 0.2 g/70 mL, at 600 rpm. In this regard, the optimum operating conditions were studied by a 23 full factorial design. Experimental results address the definition of a novel approach, pursuing the recovery of resources of great industrial interest from the residues originating from WEEE mechanical treatments typically performed at large scale. As this dust fraction is not sent for recovery but currently disposed, the proposed recycling strategy promotes the diversion of waste from landfill while reducing the need for virgin materials via lower-impact metallurgical processes.
Collapse
Affiliation(s)
- Alessandra Marra
- SEED-Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - Alessandra Cesaro
- SEED-Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 84084, Fisciano, SA, Italy.
| | - Vincenzo Belgiorno
- SEED-Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| |
Collapse
|
6
|
He G, Wang X, Liu X, Xiao X, Huang S, Wu J. Nutrients Availability Shapes Fungal Community Composition and Diversity in the Rare Earth Mine Tailings of Southern Jiangxi, China. RUSS J ECOL+ 2019. [DOI: 10.1134/s1067413618660037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Nguyen VK, Ha MG, Shin S, Seo M, Jang J, Jo S, Kim D, Lee S, Jung Y, Kang P, Shin C, Ahn Y. Electrochemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:852-859. [PMID: 29986334 DOI: 10.1016/j.jenvman.2018.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Mine wastes from tungsten mine which contain a high concentration of arsenic (As) may expose many environmental problems because As is very toxic. This study aimed to evaluate bioleaching efficiency of As and manganese (Mn) from tungsten mine wastes using the pure and mixed culture of Acidithiobacillus ferrooxidans and A. thiooxidans. The electrochemical effect of the electrode through externally applied voltage on bacterial growth and bioleaching efficiency was also clarified. The obtained results indicated that both the highest As extraction efficiency (96.7%) and the highest Mn extraction efficiency (100%) were obtained in the mixed culture. A. ferrooxidans played a more important role than A. thiooxidans in the extraction of As whereas A. thiooxidans was more significant than A. ferrooxidans in the extraction of Mn. Unexpectedly, the external voltage applied to the bioleaching did not enhance metal extraction rate but inhibited bacterial growth, resulting in a reverse effect on bioleaching efficiency. This could be due to the low electrical tolerance of bioleaching bacteria. However, this study asserted that As and Mn could be successfully removed from tungsten mine waste by the normal bioleaching using the mixed culture of A. ferrooxidans and A. thiooxidans.
Collapse
Affiliation(s)
- Van Khanh Nguyen
- Department of Environmental Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Myung-Gyu Ha
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Seunghye Shin
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Minhyeong Seo
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Jongwon Jang
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Seungjin Jo
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Donghyeon Kim
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Sungmin Lee
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Yoonho Jung
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | | | - Chajeong Shin
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Yeonghee Ahn
- Department of Environmental Engineering, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
8
|
Han B, Altansukh B, Haga K, Stevanović Z, Jonović R, Avramović L, Urosević D, Takasaki Y, Masuda N, Ishiyama D, Shibayama A. Development of copper recovery process from flotation tailings by a combined method of high‒pressure leaching‒solvent extraction. JOURNAL OF HAZARDOUS MATERIALS 2018; 352:192-203. [PMID: 29609151 DOI: 10.1016/j.jhazmat.2018.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Sulfide copper mineral, typically Chalcopyrite (CuFeS2), is one of the most common minerals for producing metallic copper via the pyrometallurgical process. Generally, flotation tailings are produced as a byproduct of flotation and still consist of un‒recovered copper. In addition, it is expected that more tailings will be produced in the coming years due to the increased exploration of low‒grade copper ores. Therefore, this research aims to develop a copper recovery process from flotation tailings using high‒pressure leaching (HPL) followed by solvent extraction. Over 94.4% copper was dissolved from the sample (CuFeS2 as main copper mineral) by HPL in a H2O media in the presence of pyrite, whereas the iron was co‒dissolved with copper according to an equation given as CCu = 38.40 × CFe. To avoid co‒dissolved iron giving a negative effect on the subsequent process of electrowinning, solvent extraction was conducted on the pregnant leach solution for improving copper concentration. The result showed that 91.3% copper was recovered in a stripped solution and 98.6% iron was removed under the optimal extraction conditions. As a result, 86.2% of copper was recovered from the concentrate of flotation tailings by a proposed HPL‒solvent extraction process.
Collapse
Affiliation(s)
- Baisui Han
- Graduate School of Engineering and Resource Science, Akita University, 1‒1 Tegata Gakuen‒machi, Akita, 010‒8502, Japan.
| | - Batnasan Altansukh
- Graduate School of International Resource Sciences, Akita University, 1‒1 Tegata Gakuen‒machi, Akita, 010‒8502, Japan
| | - Kazutoshi Haga
- Graduate School of Engineering Science, Akita University, 1‒1 Tegata Gakuen‒machi Akita 010‒8502, Japan.
| | - Zoran Stevanović
- Mining and Metallurgy Institute Bor, Zeleni Bulevar 35, 19210, Bor, Serbia.
| | - Radojka Jonović
- Mining and Metallurgy Institute Bor, Zeleni Bulevar 35, 19210, Bor, Serbia
| | - Ljiljana Avramović
- Mining and Metallurgy Institute Bor, Zeleni Bulevar 35, 19210, Bor, Serbia
| | - Daniela Urosević
- Mining and Metallurgy Institute Bor, Zeleni Bulevar 35, 19210, Bor, Serbia
| | - Yasushi Takasaki
- Graduate School of International Resource Sciences, Akita University, 1‒1 Tegata Gakuen‒machi, Akita, 010‒8502, Japan
| | - Nobuyuki Masuda
- Graduate School of International Resource Sciences, Akita University, 1‒1 Tegata Gakuen‒machi, Akita, 010‒8502, Japan
| | - Daizo Ishiyama
- Graduate School of International Resource Sciences, Akita University, 1‒1 Tegata Gakuen‒machi, Akita, 010‒8502, Japan
| | - Atsushi Shibayama
- Graduate School of International Resource Sciences, Akita University, 1‒1 Tegata Gakuen‒machi, Akita, 010‒8502, Japan.
| |
Collapse
|
9
|
Ren B, Zhou Y, Hursthouse AS, Deng R. Research on the Characteristics and Mechanism of the Cumulative Release of Antimony from an Antimony Smelting Slag Stacking Area under Rainfall Leaching. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:7206876. [PMID: 28804669 PMCID: PMC5539936 DOI: 10.1155/2017/7206876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/04/2017] [Accepted: 02/05/2017] [Indexed: 05/14/2023]
Abstract
We aimed to study the characteristics and the mechanism of the cumulative release of antimony at an antimony smelting slag stacking area in southern China. A series of dynamic and static leaching experiments to simulate the effects of rainfall were carried out. The results showed that the release of antimony from smelting slag increased with a decrease in the solid-liquid ratio, and the maximum accumulated release was found to be 42.13 mg Sb/kg waste and 34.26 mg Sb/kg waste with a solid/liquid ratio of 1 : 20; the maximum amount of antimony was released within 149-420 μm size fraction with 7.09 mg/L of the cumulative leaching. Also, the antimony release was the greatest and most rapid at pH 7.0 with the minimum release found at pH 4.0. With an increase in rainfall duration, the antimony release increased. The influence of variation in rainfall intensity on the release of antimony from smelting slag was small.
Collapse
Affiliation(s)
- Bozhi Ren
- Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Hunan University of Science and Technology, Xiangtan 411201, China
- *Bozhi Ren:
| | - Yingying Zhou
- Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Andrew S. Hursthouse
- Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Hunan University of Science and Technology, Xiangtan 411201, China
- School of Science & Sport, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Renjian Deng
- Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|