1
|
Shin J, Yu J, Park M, Kim C, Kim H, Park Y, Ban C, Seydametova E, Song YH, Shin CS, Chung KH, Woo JM, Chung H, Park JB, Kweon DH. Endocytosing Escherichia coli as a Whole-Cell Biocatalyst of Fatty Acids. ACS Synth Biol 2019; 8:1055-1066. [PMID: 31018087 DOI: 10.1021/acssynbio.8b00519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Whole cell biocatalysts can be used to convert fatty acids into various value-added products. However, fatty acid transport across cellular membranes into the cytosol of microbial cells limits substrate availability and impairs membrane integrity, which in turn decreases cell viability and bioconversion activity. Because these problems are associated with the mechanism of fatty acid transport through membranes, a whole-cell biocatalyst that can form caveolae-like structures was generated to promote substrate endocytosis. Caveolin-1 ( CAV1) expression in Escherichia coli increased both the fatty acid transport rate and intracellular fatty acid concentrations via endocytosis of the supplemented substrate. Furthermore, fatty-acid endocytosis alleviated substrate cytotoxicity in E. coli. These traits attributed to bacterial endocytosis resulted in dramatically elevated biotransformation efficiencies in fed-batch and cell-recycle reaction systems when caveolae-forming E. coli was used for the bioconversion of ricinoleic acid (12-hydroxyoctadec-9-enoic acid) to ( Z)-11-(heptanoyloxy) undec-9-enoic acid. We propose that CAV1-mediated endocytosing E. coli represents a versatile tool for the biotransformation of hydrophobic substrates.
Collapse
Affiliation(s)
- Jonghyeok Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiwon Yu
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chakhee Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hooyeon Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yunjeong Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choongjin Ban
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Emine Seydametova
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | | | - Kyung-Hwun Chung
- Electron Microscope Facility, Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Min Woo
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunwoo Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Biologics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Jeon EY, Song JW, Cha HJ, Lee SM, Lee J, Park JB. Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane. J Biotechnol 2018; 281:161-167. [DOI: 10.1016/j.jbiotec.2018.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 10/28/2022]
|
3
|
Improving catalytic activity of the Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid. Sci Rep 2018; 8:10280. [PMID: 29980730 PMCID: PMC6035261 DOI: 10.1038/s41598-018-28575-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Baeyer–Villiger monooxygenases (BVMOs) can be used for the biosynthesis of lactones and esters from ketones. However, the BVMO-based biocatalysts are not so stable under process conditions. Thereby, this study focused on enhancing stability of the BVMO-based biocatalysts. The biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid by the recombinant Escherichia coli expressing the BVMO from Pseudomonas putida and an alcohol dehydrogenase from Micrococcus luteus was used as a model system. After thorough investigation of the key factors to influence stability of the BVMO, Cys302 was identified as an engineering target. The substitution of Cys302 to Leu enabled the engineered enzyme (i.e., E6BVMOC302L) to become more stable toward oxidative and thermal stresses. The catalytic activity of E6BVMOC302L-based E. coli biocatalysts was also greater than the E6BVMO-based biocatalysts. Another factor to influence biocatalytic performance of the BVMO-based whole-cell biocatalysts was availability of carbon and energy source during biotransformations. Glucose feeding into the reaction medium led to a marked increase of final product concentrations. Overall, the bioprocess engineering to improve metabolic stability of host cells in addition to the BVMO engineering allowed us to produce (Z)-11-(heptanoyloxy)undec-9-enoic acid to a concentration of 132 mM (41 g/L) from 150 mM ricinoleic acid within 8 h.
Collapse
|
5
|
Woo JM, Kim JW, Song JW, Blank LM, Park JB. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity. PLoS One 2016; 11:e0163265. [PMID: 27681369 PMCID: PMC5040553 DOI: 10.1371/journal.pone.0163265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/05/2016] [Indexed: 01/29/2023] Open
Abstract
The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.
Collapse
Affiliation(s)
- Ji-Min Woo
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Ji-Won Kim
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Ji-Won Song
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Jin-Byung Park
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 120-750, Republic of Korea
- * E-mail:
| |
Collapse
|