1
|
Huang J, Lei T, Zhou Q, Fang Z, Ruan H, Wang L, Qian W, Lu Y, Wang Q, Gao L, Wang Z, Wang Y. Comparative Metabolome and Transcriptome Analysis Revealed the Accumulative Mechanism of Rubusoside in Chinese Sweet Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24539-24551. [PMID: 39442010 DOI: 10.1021/acs.jafc.4c07127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Terpenoids are important secondary metabolites in Rubus. Rubusoside is a relatively specific diterpenoid bioactive component in the leaves of Chinese Sweet Tea (Rubus suavissimus). However, the terpenoid anabolic pathway of Rubus and the molecular mechanism underlying the specific accumulation of rubusoside in R. suavissimus remain unclear. Here, metabolomics and transcriptomics analyses were performed on differences in terpenoid metabolism levels between R. suavissimus (sweet leaves) and Rubus chingii (bitter leaves). Steviol glycosides and goshonosides primarily accumulated in R. suavissimus and R. chingii, respectively. Three pairs of highly homologous glycosyltransferase genes (UGT85A57, UGT75L20, and UGT75T4) associated with rubusoside biosynthesis in the two Rubus species were identified. The three pairs of UGT proteins in both species could glycosylate steviol. Thus, the transcriptional regulation of UGTs in R. suavissimus appears to play a pivotal role in rubusoside accumulation. Our findings provide insights into the differences in terpenoid metabolism between R. suavissimus and R. chingii and reveal the molecular mechanism of rubusoside accumulation in R. suavissimus.
Collapse
Affiliation(s)
- Jun Huang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Qi Zhou
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhou Fang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Haixiang Ruan
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Lei Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wei Qian
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yeyang Lu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qi Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhenhong Wang
- Resources & Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
2
|
Li L, Fu J, Liu N. Advances in the Structures, Pharmacological Activities, and Biosynthesis of Plant Diterpenoids. J Microbiol Biotechnol 2024; 34:1563-1579. [PMID: 39081244 PMCID: PMC11380518 DOI: 10.4014/jmb.2402.02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 08/29/2024]
Abstract
More and more diterpenoids have attracted extensive attention due to the diverse chemical structures and excellent biological activities, and have been developed into clinical drugs or consumer products. The vast majority of diterpenoids are derived from plants. With the long-term development of plant medicinal materials, the natural resources of many plant diterpenoids are decreasing, and the biosynthetic mechanism of key active components has increasingly become a research hotspot. Using synthetic biology to engineer microorganisms into "cell factories" to produce the desired compounds is an essential means to solve these problems. In this review, we depict the plant-derived diterpenoids from chemical structure, biological activities, and biosynthetic pathways. We use representative plant diterpenes as examples to expound the research progress on their biosynthesis, and summarize the heterologous production of plant diterpenoids in microorganisms in recent years, hoping to lay the foundation for the development and application of plant diterpenoids in the future.
Collapse
Affiliation(s)
- Leilei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jia Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
3
|
Liu Y, Wu Z, Chen Y, Guan Y, Guo H, Yang M, Yue P. Rubusoside As a Multifunctional Stabilizer for Novel Nanocrystal-Based Solid Dispersions with a High Drug Loading: A Case Study. J Pharm Sci 2024; 113:699-710. [PMID: 37659720 DOI: 10.1016/j.xphs.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
The oral bioavailability of poorly soluble drugs has always been the focus of pharmaceutical researchers. We innovatively combined nanocrystal technology and solid dispersion technology to prepare novel nanocrystalline solid dispersions (NCSDs), which enable both the solidification and redispersion of nanocrystals, offering a promising new pathway for oral delivery of insoluble Chinese medicine ingredients. The rubusoside (Rub) was first used as the multifunctional stabilizer of novel apigenin nanocrystal-based solid dispersions (AP-NSD), improving the in vitro solubilization rate of the insoluble drug apigenin(AP). AP-NSD has been produced using a combination of homogenisation and spray-drying technology. The effects of stabilizer type and concentration on AP nanosuspensions (AP-NS) particles, span, and zeta potential were studied. And the effects of different types of protective agents on the yield and redispersibility of AP-NSD were also studied. Furthermore, AP-NSD was characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). Solubility was used to assess the in vitro dissolution of AP-NSD relative to APIs and amorphous solid dispersions (AP-ASD), and AP-ASD was prepared by the solvent method. The results showed that 20% Rub stabilized AP-NSD exhibited high drug-loading and good redispersibility and stability, and higher in vitro dissolution rate, which may be related to the presence of Rub on surface of drug. Therefore provides a natural and safe option for the development of formulations for insoluble drugs.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Zhenfeng Wu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Yingchong Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Yongmei Guan
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Huiwen Guo
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Ming Yang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China.
| |
Collapse
|
4
|
Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res 2023; 10:16. [PMID: 36978167 PMCID: PMC10047482 DOI: 10.1186/s40779-023-00448-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Jiang-Ming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
| | - Yan-Chang Gan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Xiao-Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Zhe-Chen Gao
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033 Guangdong China
| | - Shi-Xuan Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011 Zhejiang China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Si-En Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077 China
| | - Alec McCarthy
- Department of Functional Materials, Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Johnson V. John
- Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68130 USA
| | - Dai-Xu Wei
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002 Sichuan China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710127 China
| | - Hong-Hao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| |
Collapse
|
5
|
Mao Y, Chen Z, Ren Y, Sun Y, Wang Y. Whole-Cell Biocatalyst for Rubusoside Production in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13155-13163. [PMID: 34699718 DOI: 10.1021/acs.jafc.1c04873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rubusoside (Rub) is a highly sweet diterpene glycoside mainly isolated from the leaves of Rubus suavissimus (Rosaceae). It has been used as a low-calorie natural sweetener for decades and was recently found to be a potential drug lead. In this study, we designed a whole-cell biocatalyst to achieve the glycosylation of steviol to Rub in Saccharomyces cerevisiae. The sucrose synthases were applied to construct a uridine diphosphate glucose regeneration system, which were coupled with optimal combinations of different uridine diphosphate (UDP) glycosyltransferases from multiple plant species. After optimization of reaction conditions, the residues in SrUGT74G1 probably influencing glycosylation efficiency were subjected to site-directed mutagenesis. Double mutations of S84A/E87A reduced the accumulation of intermediates, finally glucosylating 1.27 g/L steviol to 0.45 ± 0.06 g/L steviolmonoside (conversion rate = 23.3%) and 1.92 ± 0.17 g/L Rub (conversion rate = 74.9%). A high efficiency of Rub biosynthesis could be achieved without supply of additional UDPG. This work provided the first example of multi-step glycosylation reactions in whole-cell biocatalysis, which laid a foundation of scalable production of the value-added diterpene sweetener in the future.
Collapse
Affiliation(s)
- Yaping Mao
- East China University of Science and Technology, Shanghai 200237, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhuo Chen
- University of Chinese Academy of Sciences, Beijing 100039, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhong Ren
- East China University of Science and Technology, Shanghai 200237, China
| | - Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- East China University of Science and Technology, Shanghai 200237, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Yan Z, Cao X, Yang X, Yang S, Xu L, Jiang X, Xiao M. A Novel β-Glucosidase From Chryseobacterium scophthalmum 1433 for Efficient Rubusoside Production From Stevioside. Front Microbiol 2021; 12:744914. [PMID: 34712213 PMCID: PMC8546341 DOI: 10.3389/fmicb.2021.744914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
As a natural sweetening and solubilizing agent, rubusoside has great potential in the application of healthy beverages and pharmaceuticals. However, the direct extraction and purification of rubusoside from raw materials is inefficient. In this work, a novel β-glucosidase (CsBGL) was obtained from Chryseobacterium scophthalmum 1433 through screening of the environmental microorganisms. CsBGL markedly hydrolyzed sophorese (Glcβ1-2Glc) and laminaribiose (Glcβ1-3Glc), but for steviol glycosides, it only hydrolyzed the C-13/C-19-linked sophorese, instead of the C-13/C-19-linked Glcβ1-2[Glcβ1-3]Glc trisaccharide and Glcβ1-monosaccharide. It efficiently hydrolyzed stevioside (240 g/L) to produce rubusoside (99% yield) at 47.5°C for 70 min. Even when using a crude steviol glycosides extract (500 g/L) containing ∼226 g/L stevioside as the substrate, CsBGL could also convert stevioside to rubusoside (99% yield) at 47.5°C for 2 h, in which the rubusoside concentration increased from the initial 42 g/L to the final 222 g/L. These results reveal that CsBGL would be a promising biocatalyst for the industry-scale production of rubusoside from stevioside or/and the crude steviol glycosides extract.
Collapse
Affiliation(s)
- Zhenxin Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xueting Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shida Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Li Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Min Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Goodman C, Lyon KN, Scotto A, Smith C, Sebrell TA, Gentry AB, Bala G, Stoner GD, Bimczok D. A High-Throughput Metabolic Microarray Assay Reveals Antibacterial Effects of Black and Red Raspberries and Blackberries against Helicobacter pylori Infection. Antibiotics (Basel) 2021; 10:845. [PMID: 34356766 PMCID: PMC8300682 DOI: 10.3390/antibiotics10070845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori infection is commonly treated with a combination of antibiotics and proton pump inhibitors. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed the antibacterial effects of black and red raspberries and blackberries on H. pylori. Freeze-dried powders and organic extracts from black and red raspberries and blackberries were prepared, and high-performance liquid chromatography was used to measure the concentrations of anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, a high-throughput metabolic growth assay based on the Biolog system was developed and validated with the antibiotic metronidazole. Biocompatibility was analyzed using human gastric organoids. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. Antimicrobial activity was higher for extracts than powders and appeared to be independent of the anthocyanin concentration. Importantly, human gastric epithelial cell viability was not negatively impacted by black raspberry extract applied at the concentration required for complete bacterial growth inhibition. Our data suggest that black and red raspberry and blackberry extracts may have potential applications in the treatment and prevention of H. pylori infection but differ widely in their MICs. Moreover, we demonstrate that the Biolog metabolic assay is suitable for high-throughput antimicrobial susceptibility screening of H. pylori.
Collapse
Affiliation(s)
- Candace Goodman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (C.G.); (G.B.)
| | - Katrina N. Lyon
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Aitana Scotto
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Cyra Smith
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Thomas A. Sebrell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Andrew B. Gentry
- Bozeman Health GI Clinic, Bozeman Health Deaconess Hospital, Bozeman, MT 59715, USA;
| | - Ganesh Bala
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; (C.G.); (G.B.)
| | - Gary D. Stoner
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (K.N.L.); (A.S.); (C.S.); (T.A.S.); (G.D.S.)
| |
Collapse
|
8
|
Angeline N, Choo SS, Kim CH, Bhang SH, Kim TH. Precise Electrical Detection of Curcumin Cytotoxicity in Human Liver Cancer Cells. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00002-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Su Z, Ling X, Ji K, Huang H, Liu X, Yin C, Zhu H, Guo Y, Mo Y, Lu Y, Liang Y, Zheng H. 1H NMR-based urinary metabonomic study of the antidiabetic effects of Rubus Suavissimus S. Lee in STZ-induced T1DM rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122347. [PMID: 33075703 DOI: 10.1016/j.jchromb.2020.122347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/06/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
Long-term hyperglycemia associated with diabetes mellitus (DM) causes damage to various organs and tissues, including the eyes, kidneys, heart, blood vessels and nerves. Rubus Suavissimus S. Lee (RS), a shrub whose leaves are used in traditional Chinese medicine (TCM), has been shown to exert hypoglycemic effects in DM patients. However, the underlying mechanism is unclear. This was investigated in the present study in a rat model of streptozotocin-induced type 1 diabetes mellitus (T1DM) by 1H NMR analysis. We identify 9 metabolites whose levels were altered in T1DM rats compared to control rats, namely, lactate, acetate, pyruvate, succinate, 2-oxoglutarate, citrate, creatinine, allantoin, and hippurate, which are mostly related to glycolysis/gluconeogenesis, pyruvate metabolism, TCA cycle, and other metabolism. The observed pathologic changes in the levels of these metabolites in T1DM rats were reversed by treatment with RS. Thus, RS exerts effects in T1DM rats by regulating the three abnormal metabolic pathways synergistically. These findings provide supporting evidence for the therapeutic efficacy of this TCM formulation in the treatment of DM.
Collapse
Affiliation(s)
- Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xue Ling
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Kewei Ji
- Bengbu Food and Drug Inspection Center, Anhui Province 233000, China
| | - Huimin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xi Liu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Chunli Yin
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hongjia Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yiyi Mo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yating Lu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Hua Zheng
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
10
|
Zhao L, Wang Y, Li Z, Wang X, Chen Y, Wu X. Enzymatic Monoglucosylation of Rubusoside and the Structure-Sweetness/Taste Relationship of Monoglucosyl Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8702-8709. [PMID: 32686405 DOI: 10.1021/acs.jafc.0c03236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoglucosylation of rubusoside not only could increase its structural diversity but may also improve its taste. To biosynthesize the monoglucosyl rubusosides, a series of glycosyltransferases and glycosynthases were screened to identify the enzymes capable of specifically glycosylating the hydroxyl groups of the 13-O-β-d-glucosyl and 19-COO-β-d-glucosyl moieties. After structural characterization, the effect of structure on sweetness and taste was established based on these rubusoside-derived analogues, including two first characterized compounds. β-Monoglucosylation of two 2-hydroxyl groups, as well as α-monoglucosylations of the 4- and 6-hydroxyl groups of the 13-glucosyl moiety, could significantly increase the relative sweetness of rubusoside to 140 while maintaining or improving the taste quality. In contrast, monoglucosylations of other hydroxyl groups in our study usually decreased the taste quality of the rubusoside. Additionally, the possibility of a negative influence of these monoglucosylated derivatives on the function of islets was preliminarily excluded, which should facilitate the development of rubusoside-derived sweeteners.
Collapse
Affiliation(s)
- Ling Zhao
- Laboratory of Chemical Biology, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Yao Wang
- Laboratory of Chemical Biology, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Zhenlin Li
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, 100 Shizi St. Hongshan Rd. Nanjing, Jiangsu Province 210028, PR China
| | - Xiaonan Wang
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Yijun Chen
- Laboratory of Chemical Biology, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Xuri Wu
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| |
Collapse
|
11
|
Effect of Rubusoside, a Natural Sucrose Substitute, on Streptococcus mutans Biofilm Cariogenic Potential and Virulence Gene Expression In Vitro. Appl Environ Microbiol 2020; 86:AEM.01012-20. [PMID: 32503907 DOI: 10.1128/aem.01012-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 11/20/2022] Open
Abstract
Dental caries is a biofilm-mediated disease in which Streptococcus mutans is the main pathogenic microorganism, and its incidence is closely related to sucrose. Rubusoside is a natural nonnutritive sweetener isolated from Rubus suavissimus S. Lee. This study was designed to determine the effect of this sucrose substitute on the cariogenic properties and virulence gene expression of S. mutans biofilms. S. mutans was exposed to brain heart infusion (BHI) medium (as a control), 1% sucrose-supplemented medium, 1% rubusoside-supplemented medium, and 1% xylitol-supplemented medium. The growth curve of the biofilm was monitored by crystal violet staining, and the pH was measured every 24 h. After 5 days, the biofilms formed on the glass coverslips were recovered to determine the biomass (dry weight and total amount of soluble proteins), numbers of CFU, and amounts of intra- and extracellular polysaccharides. Biofilm structural imaging was performed using a scanning electron microscope (SEM). Virulence gene expression (gtfB, gtfC, gtfD, ftf, spaP, gbpB, ldh, atpF, vicR, and comD) was determined by reverse transcription-quantitative PCR. Growth in rubusoside resulted in lower levels of acid production than observed during growth in sucrose, xylitol, and the control, while it also reduced the level of biofilm accumulation and bacterial viability and even reduced the level of production of extracellular polysaccharides. By SEM, the levels of biofilm formation and extracellular matrix during growth in rubusoside were lower than these levels during growth in sucrose and xylitol. From the perspective of virulence genes, growth in rubusoside and xylitol significantly inhibited the expression of virulence genes compared with their levels of expression after growth in sucrose. Among these genes, gtfB, gtfC, gbpB, ldh, and comD downregulation was found with growth in rubusoside compared with their expression with growth in xylitol. Therefore, rubusoside appears to be less potentially cariogenic than sucrose and xylitol and may become an effective sucrose substitute for caries prevention. Further studies are needed to deepen these findings.IMPORTANCE Dental caries is a major public health challenge and places heavy biological, social, and financial burdens on individuals and health care systems. To palliate the deleterious effect of sucrose on the virulence factors of S. mutans, massive commercial efforts have been oriented toward developing products that may act as sucrose substitutes. Rubusoside, a natural sucrose substitute, is a plant extract with a high level of sweetness. Although some studies have shown that rubusoside does not produce acids or inhibit the growth of S. mutans, little attention has been paid to its effect on dental biofilm and the underlying mechanisms. Our study focuses on the effect of rubusoside on the formation and structure of biofilms and the expression of virulence genes. The results confirm that rubusoside can inhibit accumulation, bacterial viability, polysaccharide production by the biofilm, and related gene expression. These results provide further insight into the cariogenicity of S. mutans biofilms and demonstrate a new perspective for studying the impact of sucrose substitutes on caries.
Collapse
|
12
|
Li L, Jiang M, Li Y, Su J, Li L, Qu X, Fan L. 1H-NMR Metabolomics Analysis of the Effect of Rubusoside on Serum Metabolites of Golden Hamsters on a High-Fat Diet. Molecules 2020; 25:molecules25061274. [PMID: 32168894 PMCID: PMC7143983 DOI: 10.3390/molecules25061274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/30/2023] Open
Abstract
Rubusoside is a natural sweetener and the active component of Rubus suavissimus. The preventive and therapeutic effect of rubusoside on high-fat diet-induced (HFD) serum metabolite changes in golden hamsters was analyzed by 1H-NMR metabolomics to explore the underlying mechanism of lipid metabolism regulation. 1H-NMR serum metabolomics analyses revealed a disturbed amino acid-, sugar-, fat-, and energy metabolism in HFD animals. Animals supplemented with rubusoside can partly reverse the metabolism disorders induced by high-fat diet and exerted good anti-hypertriglyceridemia effect by intervening in some major metabolic pathways, involving amino acid metabolism, synthesis of ketone bodies, as well as choline and 4-hydroxyphenylacetate metabolism. This study indicates that rubusoside can interfere with and normalize high-fat diet-induced metabolic changes in serum and could provide a theoretical basis to establish rubusoside as a potentially therapeutic tool able to revert or prevent lipid metabolism disorders.
Collapse
Affiliation(s)
- Li Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
| | - Manjing Jiang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
| | - Yaohua Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
| | - Jian Su
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China;
| | - Li Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
- Correspondence: (X.Q.); (L.F.); Tel./Fax: +86-771-560-1290 (X.Q.); +86-771-495-3513 (L.F.)
| | - Lanlan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China; (L.L.); (M.J.); (Y.L.); (L.L.)
- Correspondence: (X.Q.); (L.F.); Tel./Fax: +86-771-560-1290 (X.Q.); +86-771-495-3513 (L.F.)
| |
Collapse
|
13
|
Son G, Nguyen TTH, Park B, Kwak S, Jin J, Kim YM, Moon YH, Park S, Kim SB, Kim D. Synthesis and characterization of stevioside having low degree polymerized glucosides using dextransucrase and dextranase. Enzyme Microb Technol 2020; 132:109412. [DOI: 10.1016/j.enzmictec.2019.109412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
|
14
|
Woo JE, Seong HJ, Lee SY, Jang YS. Metabolic Engineering of Escherichia coli for the Production of Hyaluronic Acid From Glucose and Galactose. Front Bioeng Biotechnol 2019; 7:351. [PMID: 31824939 PMCID: PMC6881274 DOI: 10.3389/fbioe.2019.00351] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022] Open
Abstract
Hyaluronic acid is a glycosaminoglycan biopolymer widely present throughout connective and epithelial tissue, and has been of great interest for medical and cosmetic applications. In the microbial production of hyaluronic acid, it has not been established to utilize galactose enabling to be converted to UDP-glucuronic acid, which is a precursor for hyaluronic acid biosynthesis. In this study, we engineered Escherichia coli to produce hyaluronic acid from glucose and galactose. The galactose-utilizing Leloir pathway was activated by knocking out the galR and galS genes encoding the transcriptional repressors. Also, the hasA gene from Streptococcus zooepidemicus was introduced for the expression of hyaluronic acid synthase. The consumption rates of glucose and galactose were modulated by knockout of the pfkA and zwf genes, which encode 6-phosphofructokinase I and glucose-6-phosphate dehydrogenase, respectively. Furthermore, the precursor biosynthesis pathway for hyaluronic acid production was manipulated by separately overexpressing the gene clusters galU-ugd and glmS-glmM-glmU, which enable the production of UDP-glucuronic acid and UDP-N-acetyl-glucosamine, respectively. Batch culture of the final engineered strain produced 29.98 mg/L of hyaluronic acid from glucose and galactose. As a proof of concept, this study demonstrated the production of hyaluronic acid from glucose and galactose in the engineered E. coli.
Collapse
Affiliation(s)
- Ji Eun Woo
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Hyeon Jeong Seong
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yu-Sin Jang
- Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science (BK21 Plus Program), Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| |
Collapse
|