1
|
Liaqat F, Akgün İH, Khazi MI, Eltem R. Characterization of different chitosanases of Bacillus strains and their application in chitooligosaccharides production. J Basic Microbiol 2023; 63:404-416. [PMID: 35849112 DOI: 10.1002/jobm.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 11/07/2022]
Abstract
Chitosanases are potential candidates for chitooligosaccharides (COS) production-based industries, therefore, the discovery of chitosanases having commercial potential will remain a priority worldwide. This study aims to characterize different chitosanases of Bacillus strains for COS production. Six different indigenous Bacillus strains (B. cereus EGE-B-6.1m, B. cereus EGE-B-2.5m, B. cereus EGE-B-5.5m, B. cereus EGE-B-10.4i, B. thuringiensis EGE-B-3.5m, and B. mojavensis EGE-B-5.2i) were used to purify and characterize chitosanases. All purified chitosanases have a similar molecular weight (37 kDa) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, other characteristics such as optimum temperature and pH, kinetic parameters (Km and Vmax ), temperature, and pH stabilities were dissimilar among the strains of different Bacillus species and within the same species. Furthermore, chitosanases of all strains were able to successfully hydrolyze chitosan to COS and oligomers of the degree of polymerization 2-6 were detected with chitobiose and chitotriose as major hydrolysis products. The relative yields of COS were in a range of 19%-31% and chitosanase of B. thuringiensis EGE-B-3.5m turned out to be the best enzyme in terms of its characteristics and COS production potential with maximum relative yield (31%). Results revealed that Bacillus chitosanases could be used directly for efficient bioconversion of chitosan into COS and will be valuable for large-scale production of biologically active COS.
Collapse
Affiliation(s)
- Fakhra Liaqat
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkiye
| | - İsmail Hakki Akgün
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkiye
| | - Mahammed Ilyas Khazi
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkiye
| | - Rengin Eltem
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkiye
| |
Collapse
|
2
|
Shen D, He X, Weng P, Liu Y, Wu Z. A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation. FEMS Yeast Res 2022; 22:6775076. [PMID: 36288242 DOI: 10.1093/femsyr/foac050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 10/22/2022] [Indexed: 01/07/2023] Open
Abstract
Yeast is widely used in the fermentation industry, and the major challenges in fermentation production system are high capital cost and low reaction rate. High cell-density culture is an effective method to increase the volumetric productivity of the fermentation process, thus making the fermentation process faster and more robust. During fermentation, yeast is subjected to various environmental stresses, including osmotic, ethanol, oxidation, and heat stress. To cope with these stresses, yeast cells need appropriate adaptive responses to acquire stress tolerances to prevent stress-induced cell damage. Since a single stressor can trigger multiple effects, both specific and nonspecific effects, general and specific stress responses are required to achieve comprehensive protection of cells. Since all these stresses disrupt protein structure, the upregulation of heat shock proteins and trehalose genes is induced when yeast cells are exposed to stress. A better understanding of the research status of yeast HCDC and its underlying response mechanism to various stresses during fermentation is essential for designing effective culture control strategies and improving the fermentation efficiency and stress resistance of yeast.
Collapse
Affiliation(s)
- Dongxu Shen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Xiaoli He
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
3
|
Expression and Surface Display of an Acidic Cold-Active Chitosanase in Pichia pastoris Using Multi-Copy Expression and High-Density Cultivation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030800. [PMID: 35164064 PMCID: PMC8839494 DOI: 10.3390/molecules27030800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Chitosanase hydrolyzes β-(1,4)-linked glycosidic bonds are used in chitosan chains to release oligosaccharide mixtures. Here, we cloned and expressed a cold-adapted chitosanase (CDA, Genbank: MW094131) using multi-copy expression plasmids (CDA1/2/3/4) in Pichia pastoris. We identified elevated CDA expression levels in multi-copy strains, with strain PCDA4 selected for high-density fermentation and enzyme-activity studies. The high-density fermentation approach generated a CDA yield of 20014.8 U/mL, with temperature and pH optimization experiments revealing the highest CDA activity at 20 °C and 5.0, respectively. CDA was stable at 10 °C and 20 °C. Thus, CDA could be used at low temperatures. CDA was then displayed on P. pastoris using multi-copy expression plasmids. Then, multi-copy strains were constructed and labelled as PCDA(1-3)-AGα1. Further studies showed that the expression of CDA(1-3)-AGα1 in multi-copy strains was increased, and that strain PCDA3-AGα1 was chosen for high-density fermentation and enzyme activity studies. By using a multi-copy expression and high-density fermentation approach, we observed CDA-AGα1 expression yields of 102415 U/g dry cell weight. These data showed that the displayed CDA exhibited improved thermostability and was more stable over wider temperature and pH ranges than free CDA. In addition, displayed CDA could be reused. Thus, the data showed that displaying enzymes on P. pastoris may have applications in industrial settings.
Collapse
|
4
|
Wang D, Li W, Zhang X, Liang S, Lin Y. Green Process: Improved Semi-Continuous Fermentation of Pichia pastoris Based on the Principle of Vitality Cell Separation. Front Bioeng Biotechnol 2021; 9:777774. [PMID: 34917600 PMCID: PMC8669635 DOI: 10.3389/fbioe.2021.777774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The large-scale fermentation of Pichia pastoris for recombinant protein production would be time consuming and produce a large amount of waste yeast. Here we introduce a novel semi-continuous fermentation process for P. pastoris GS115 that can separate vitality cells from broth and recycle the cells to produce high-secretory recombinant pectate lyase. It is based on differences in cell sedimentation coefficients with the formation of salt bridges between metal ions and various cell states. Compared to batch-fed cultivation and general semi-continuous culture, the novel process has significant advantages, such as consuming fewer resources, taking less time, and producing less waste yeast. Sedimentation with the addition of Fe3+ metal ions consumed 14.8 ± 0.0% glycerol, 97.8 ± 1.3% methanol, 55.0 ± 0.9 inorganic salts, 81.5 ± 0.0% time cost, and 77.0 ± 0.1% waste yeast versus batch-fed cultivation to produce an equal amount of protein; in addition, the cost of solid-liquid separation was lower for cells in the collected fermentation broth. The process is economically and environmentally efficient for producing recombinant proteins.
Collapse
Affiliation(s)
- Denggang Wang
- South China University of Technology, Guangzhou, China
| | - Wenjie Li
- South China University of Technology, Guangzhou, China
| | - Xinying Zhang
- South China University of Technology, Guangzhou, China
| | - Shuli Liang
- South China University of Technology, Guangzhou, China
| | - Ying Lin
- South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Wang J, Li X, Chen H, Lin B, Zhao L. Heterologous Expression and Characterization of a High-Efficiency Chitosanase From Bacillus mojavensis SY1 Suitable for Production of Chitosan Oligosaccharides. Front Microbiol 2021; 12:781138. [PMID: 34912320 PMCID: PMC8667621 DOI: 10.3389/fmicb.2021.781138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Chitosanase plays an important role in enzymatic production of chitosan oligosaccharides (COSs). The present study describes the gene cloning and high-level expression of a high-efficiency chitosanase from Bacillus mojavensis SY1 (CsnBm). The gene encoding CsnBm was obtained by homologous cloning, ligated to pPICZαA, and transformed into Pichia pastoris X33. A recombinant strain designated X33-C3 with the highest activity was isolated from 120 recombinant colonies. The maximum activity and total protein concentration of recombinant strain X33-C3 were 6,052 U/ml and 3.75 g/l, respectively, which were obtained in fed-batch cultivation in a 50-l bioreactor. The optimal temperature and pH of purified CsnBm were 55°C and 5.5, respectively. Meanwhile, CsnBm was stable from pH 4.0 to 9.0 and 40 to 55°C. The purified CsnBm exhibited high activity toward colloidal chitosan with degrees of deacetylation from 85 to 95%. Furthermore, CsnBm exhibited high efficiency to hydrolyze different concentration of colloidal chitosan to produce COSs. The result of this study not only identifies a high-efficiency chitosanase for preparation of COSs, but also casts some insight into the high-level production of chitosanase in heterologous systems.
Collapse
Affiliation(s)
- Jianrong Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China.,Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Xiaoming Li
- Bioengineering Research Center, Guangzhou Institute of Advanced Technology, Guangzhou, China
| | - Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China.,Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Bilian Lin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China.,Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China.,Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| |
Collapse
|
6
|
Jeon EJ, Choi JW, Cho MS, Jeong KJ. Enhanced production of neoagarobiose from agar with Corynebacterium glutamicum producing exo-type and endo-type β-agarases. Microb Biotechnol 2021; 14:2164-2175. [PMID: 34310855 PMCID: PMC8449658 DOI: 10.1111/1751-7915.13899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022] Open
Abstract
Neoagarobiose (NA2) derived from agar marine biomass is a rare reagent that acts as an anti-melanogenesis reagent and moisturizer. Here, for the economical manufacturing of NA2, we developed the co-secretory production system of endo-type β-agarases (DagA) and exo-type β-agarases (EXB3) in Corynebacterium glutamicum. For this purpose, we first developed a secretory system of DagA via Tat pathway. To improve the secretion efficiency, we coexpressed two Tat pathway components (TatA and TatC), and to improve the purity of secreted DagA in the culture supernatant, two endogenous protein genes (Cg2052 and Cg1514) were removed. Using the engineered strain (C. glutamicum SP002), we confirmed that DagA as high as 1.53 g l-1 was successfully produced in the culture media with high purity (72.7% in the supernatant protein fraction). Next, we constructed the expression system (pHCP-CgR-DagA-EXB3) for the simultaneous secretion of EXB3 via Sec-pathway together with DagA, and it was clearly confirmed that DagA and EXB3 were successfully secreted as high as 54% and 24.5%, respectively. Finally, using culture medium containing DagA and EXB3, we successfully demonstrated the conversion of high-concentration agar (40 g l-1 ) into NA2 via a two-stage hydrolysis process.
Collapse
Affiliation(s)
- Eun Jung Jeon
- Department of Chemical and Biomolecular Engineering (BK Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, 55365, Korea
| | - Min Soo Cho
- Department of Chemical and Biomolecular Engineering (BK Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering (BK Plus Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,Korea Advanced Institute of Science and Technology (KAIST), Institute for the BioCentury, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
7
|
Ying W, YaPing W, Can H, Lixin M, Hong Y, Yong M, Xiaoyan L, Ben R. High-level extracellular production and immobilisation of methyl parathion hydrolase from Plesiomonas sp. M6 expressed in Pichia pastoris. Protein Expr Purif 2021; 183:105859. [PMID: 33647399 DOI: 10.1016/j.pep.2021.105859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Methyl parathion hydrolase (MPH) hydrolyses methyl parathion efficiently and specifically. Herein, we produced MPH from Plesiomonas sp. M6 using a Pichia pastoris multi-copy expression system. The original signal peptide sequence of the target gene was removed, and a modified coding sequence was synthesised. Multi-copy expression plasmids containing MPH were constructed using pHBM905BDM, and used to generate recombinant strains containing 1, 2, 3 or 4 copies of the MPH gene. The results showed that a higher target gene copy number increased the production of recombinant MPH (MPH-R), as anticipated. The expression level of the recombinant strain containing four copies of the MPH gene was increased to 1.9 U/ml using 500 ml shake flasks, and the specific activity was 15.8 U/mg. High-density fermentation further increased the target protein yield to 18.4 U/ml. Several metal ions were tested as additives, and Ni2+, Co2+ and Mg2+ at a concentration of 1 mM enhanced MPH-R activity by 196%, 201% and 154%, respectively. Enzyme immobilisation was then applied to overcome the difficulties in recovery, recycling and long-term stability associated with the free enzyme. Immobilised MPH-R exhibited significantly enhanced thermal and long-term stability, as well as broad pH adaptability. In the presence of inhibitors and chelating agents such as sodium dodecyl sulphate (SDS), immobilised MPH-R displayed 2-fold higher activity than free MPH-R, demonstrating its potential for industrial application.
Collapse
Affiliation(s)
- Wang Ying
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, People's Republic of China; State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Wang YaPing
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Huang Can
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Ma Lixin
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Yan Hong
- State Key Laboratory of Biocatalysis and Enzyme, Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Biology Faculty of Hubei University, Hubei University, Wuhan, Hubei Province, 430062, People's Republic of China
| | - Min Yong
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, People's Republic of China
| | - Liu Xiaoyan
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, People's Republic of China
| | - Rao Ben
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|