1
|
Han YH, Kim HJ, Kim K, Yang J, Seo SW. Synthetic translational coupling system for accurate and predictable polycistronic gene expression control in bacteria. Metab Eng 2025; 88:148-159. [PMID: 39742955 DOI: 10.1016/j.ymben.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Precise and predictable genetic elements are required to address various issues, such as suboptimal metabolic flux or imbalanced protein assembly caused by the inadequate control of polycistronic gene expression in bacteria. Here, we devised a synthetic biopart based on the translational coupling to control polycistronic gene expression. This module links the translation of genes within a polycistronic mRNA, maintaining their expression ratios regardless of coding sequences, transcription rate, and upstream gene translation rate. By engineering the Shine-Dalgarno sequences within these synthetic bioparts, we adjusted the expression ratios of polycistronic genes. We created 41 bioparts with varied relative expression ratios, ranging from 0.03 to 0.92, enabling precise control of pathway enzyme gene expression in a polycistronic manner. This led to up to a 7.6-fold increase in the production of valuable biochemicals such as 3-hydroxypropionic acid, poly(3-hydroxybutyrate), and lycopene. Our work provides genetic regulatory modules for precise and predictable polycistronic gene expression, facilitating efficient protein assembly, biosynthetic gene cluster expression, and pathway optimization.
Collapse
Affiliation(s)
- Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, South Korea; Institute of Systems Biology & Life Science Informatics, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, South Korea
| | - Hyeon Jin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Keonwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do, 63243, South Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Ji X, Fan D, Wang J, Zhang B, Hu Y, Lv H, Wu J, Sun Y, Liu J, Zhang Y, Wang S. Cronobacter sakazakii lysozyme inhibitor LprI mediated by HmsP and c-di-GMP is essential for biofilm formation and virulence. Appl Environ Microbiol 2024; 90:e0156424. [PMID: 39297664 PMCID: PMC11497839 DOI: 10.1128/aem.01564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
Cronobacter sakazakii poses a significant threat, particularly to neonates and infants. Despite its strong pathogenicity, understanding of C. sakazakii biofilms and their role in infections remains limited. This study investigates the roles of HmsP and c-di-GMP in biofilm formation and identifies key genetic and proteomic elements involved. Gene knockout experiments reveal that HmsP and c-di-GMP are linked to biofilm formation in C. sakazakii. Comparative proteomic profiling identifies the lysozyme inhibitor protein LprI, which is downregulated in hmsP knockouts and upregulated in c-di-GMP knockouts, as a potential biofilm formation factor. Further investigation of the lprI knockout strain shows significantly reduced biofilm formation and decreased virulence in a rat infection model. Additionally, LprI is demonstrated to bind extracellular DNA, suggesting a role in anchoring C. sakazakii within the biofilm matrix. These findings enhance our understanding of the molecular mechanisms underlying biofilm formation and virulence in C. sakazakii, offering potential targets for therapeutic intervention and food production settings.IMPORTANCECronobacter sakazakii is a bacterium that poses a severe threat to neonates and infants. This research elucidates the role of the lysozyme inhibitor LprI, modulated by HmsP and c-di-GMP, and uncovers a key factor in biofilm formation and virulence. The findings offer crucial insights into the molecular interactions that enable C. sakazakii to form resilient biofilms and persist in hostile environments, such as those found in food production facilities. These insights not only enhance our understanding of C. sakazakii pathogenesis but also identify potential targets for novel therapeutic interventions to prevent or mitigate infections. This work is particularly relevant to public health and the food industry, where controlling C. sakazakii contamination in powdered infant formula is vital for safeguarding vulnerable populations.
Collapse
Affiliation(s)
- Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yi Sun
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Lee SJ, Kim DM. Cell-Free Synthesis: Expediting Biomanufacturing of Chemical and Biological Molecules. Molecules 2024; 29:1878. [PMID: 38675698 PMCID: PMC11054211 DOI: 10.3390/molecules29081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing demand for sustainable alternatives underscores the critical need for a shift away from traditional hydrocarbon-dependent processes. In this landscape, biomanufacturing emerges as a compelling solution, offering a pathway to produce essential chemical materials with significantly reduced environmental impacts. By utilizing engineered microorganisms and biomass as raw materials, biomanufacturing seeks to achieve a carbon-neutral footprint, effectively counteracting the carbon dioxide emissions associated with fossil fuel use. The efficiency and specificity of biocatalysts further contribute to lowering energy consumption and enhancing the sustainability of the production process. Within this context, cell-free synthesis emerges as a promising approach to accelerate the shift towards biomanufacturing. Operating with cellular machinery in a controlled environment, cell-free synthesis offers multiple advantages: it enables the rapid evaluation of biosynthetic pathways and optimization of the conditions for the synthesis of specific chemicals. It also holds potential as an on-demand platform for the production of personalized and specialized products. This review explores recent progress in cell-free synthesis, highlighting its potential to expedite the transformation of chemical processes into more sustainable biomanufacturing practices. We discuss how cell-free techniques not only accelerate the development of new bioproducts but also broaden the horizons for sustainable chemical production. Additionally, we address the challenges of scaling these technologies for commercial use and ensuring their affordability, which are critical for cell-free systems to meet the future demands of industries and fully realize their potential.
Collapse
Affiliation(s)
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-Ro, Daejeon 34134, Republic of Korea;
| |
Collapse
|
4
|
Ulanova A, Mansfeldt C. EcoGenoRisk: Developing a computational ecological risk assessment tool for synthetic biology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123647. [PMID: 38402941 DOI: 10.1016/j.envpol.2024.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
The expanding field of synthetic biology (synbio) supports new opportunities in the design of targeted bioproducts or modified microorganisms. However, this rapid development of synbio products raises concerns surrounding the potential risks of modified microorganisms contaminating unintended environments. These potential invasion risks require new bioinformatic tools to inform the design phase. EcoGenoRisk is a newly constructed computational risk assessment tool for invasiveness that aims to predict where synbio microorganisms may establish a population by screening for habitats of genetically similar microorganisms. The first module of the tool identifies genetically similar microorganisms and potential ecological relationships such as competition, mutualism, and inhibition. In total, 520 archaeal and 32,828 bacterial complete assembly genomes were analyzed to test the specificity and accuracy of the tool as well as to characterize the enzymatic profiles of different taxonomic lineages. Additionally, ecological relationships were analyzed to determine which would result in the greatest potential overlap between shared functional profiles. Notably, competition displayed the significantly highest overlap of shared functions between compared genomes. Overall, EcoGenoRisk is a flexible software pipeline that assists environmental risk assessors to query large databases of known microorganisms and prioritize follow-up bench scale studies.
Collapse
Affiliation(s)
- Anna Ulanova
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO, 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Drive, Boulder, CO, 80303, USA
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO, 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Drive, Boulder, CO, 80303, USA.
| |
Collapse
|