1
|
Fajrin FA, Sulistyowaty MI, Ghiffary ML, Zuhra SA, Panggalih WR, Pratoko DK, Christianty FM, Matsunami K, Indrianingsih AW. Immunomodulatory effect from ethanol extract and ethyl acetate fraction of Curcuma heyneana Valeton and Zijp: Transient receptor vanilloid protein approach. Heliyon 2023; 9:e15582. [PMID: 37153401 PMCID: PMC10160745 DOI: 10.1016/j.heliyon.2023.e15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
This study aims to discover the immunomodulatory potential of the ethanol extract (EE) and the ethyl acetate fraction (EAF) of Curcuma heyneana Valeton and Zijp (Indonesian name: temu giring) rhizome using mice models. The affinity of the curcuminoid (curcumin, dimethoxy-, and bisdemethoxy-) through the Transient Receptor Potential Vanilloid 1 (TRPV1) was determined using Mollegro molecular docking in silico. The curcuminoid concentration of the EE and EAF of C. heyneana rhizome were determined using thin-layer chromatography densitometry. In vivo studies in mice models were conducted using the carbon clearance method to determine the phagocytosis index, and the number of leukocytes in the blood and spleen. Forty mice were divided into eight groups, including negative control (given 1% CMC-Na), positive control (given Stimuno Forte® suspension at a dose of 6.5 mg/kg BW), three groups given the EAF of C. heyneana rhizome extract at a dose of 125 mg/kg BW, 250 mg/kg BW, and 500 mg/kg BW, respectively, and three groups were given EE of temu giring rhizome extract with doses of 125 mg/kg BW, 250 mg/kg BW, and 500 mg/kg BW, respectively. E.E. and E.A.F. of C. heyneana (temu giring) rhizome extract contained dimethoxy curcumin (0.176 ± 0.01 and 4.53 ± 0.02 %b/b) greater than another curcuminoid, bisdemetoxy curcumin and curcumin. EE at 125 mg/kg BW and EAF dose at 500 mg/kg B W. of temu giring rhizome have immunostimulant activity with a phagocytosis index value of >1 compared to the negative control (p < 0.05). Additionally, both increase the number of lymphocytes, monocytes, and neutrophil cells in peripheral blood and spleen compared to the negative control (p < 0.05). Their activity was seen as similar to the positive control. Therefore, the EE of C. heyneana rhizome has immunostimulant activity, and the EAF of C. heyneana rhizome has immunosuppressant activity at 125 mg/kg BW and immunostimulant at a higher dose. The activity of temu giring as an immunomodulator was associataed with its affinity to TRPV1.
Collapse
Affiliation(s)
- Fifteen Aprila Fajrin
- Clinical and Community Department, Faculty of Pharmacy, Universitas Jember, 68121, Indonesia
- Preclinical Pharmacology Research Group, Faculty of Pharmacy, Universitas Jember, 68121, Indonesia
| | - Melanny Ika Sulistyowaty
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, 60115, Indonesia
- Corresponding author.
| | - Mohammad Labib Ghiffary
- Preclinical Pharmacology Research Group, Faculty of Pharmacy, Universitas Jember, 68121, Indonesia
| | - Swara Adla Zuhra
- Preclinical Pharmacology Research Group, Faculty of Pharmacy, Universitas Jember, 68121, Indonesia
| | - Wulan Rosa Panggalih
- Preclinical Pharmacology Research Group, Faculty of Pharmacy, Universitas Jember, 68121, Indonesia
| | - Dwi Koko Pratoko
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Universitas Jember, 68121, Indonesia
| | - Fransiska Maria Christianty
- Clinical and Community Department, Faculty of Pharmacy, Universitas Jember, 68121, Indonesia
- Preclinical Pharmacology Research Group, Faculty of Pharmacy, Universitas Jember, 68121, Indonesia
| | - Katsuyoshi Matsunami
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Anastasia Wheni Indrianingsih
- Research Center for Food Technology and Processing, National Research and Innovation Agency (PRTPP BRIN), Yogyakarta 55861, Indonesia
| |
Collapse
|
2
|
Antibacterial activity of supernatants of Lactoccocus lactis, Lactobacillus rhamnosus, Pediococcus pentosaceus and curcumin against Aeromonas hydrophila. In vitro study. Vet Res Commun 2022; 46:459-470. [PMID: 34997440 DOI: 10.1007/s11259-021-09871-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Secretions of beneficial intestinal bacteria can inhibit the growth and biofilm formation of a wide range of microorganisms. Curcumin has shown broad spectrum antioxidant, anti-inflammatory, and antimicrobial potential. It is important to evaluate the influence of these secretions with bioactive peptides, in combination with curcumin, to limit growth and inhibit biofilm formation of pathogenic bacteria of importance in aquaculture. In the present study, the supernatants of Lactoccocus lactis NZ9000, Lactobacillus rhamnosus GG and Pediococcus pentosaceus NCDO 990, and curcumin (0,1,10,25 and 50 μM) were used to evaluate their efficacy in growth, inhibition biofilm and membrane permeability of Aeromonas hydrophila CAIM 347 (A. hydrophila). The supernatants of probiotics and curcumin 1,10 and 25 μM exerted similar effects in reducing the growth of A. hydrophila at 12 h of interaction. The supernatants of the probiotics and curcumin 25 and 50 μM exerted similar effects in reducing the biofilm of A. hydrophila. There is a significant increase in the membrane permeability of A. hydrophila in interaction with 50 μM curcumin at two hours of incubation and with the supernatants separately in the same period. Different modes of action of curcumin and bacteriocins separately were demonstrated as effective substitutes for antibiotics in containing A. hydrophila and avoiding the application of antibiotics. The techniques implemented in this study provide evidence that there is no synergy between treatments at the selected concentrations and times.
Collapse
|
3
|
Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9109473. [PMID: 30774749 PMCID: PMC6350615 DOI: 10.1155/2019/9109473] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022]
Abstract
The disruption of balance between production of reactive oxygen species and antioxidant systems in favor of the oxidants is termed oxidative stress (OS). To counteract the damaging effects of prooxidant free radicals, all aerobic organisms have antioxidant defense mechanisms that are aimed at neutralizing the circulating oxidants and repair the resulting injuries. Antioxidants are either endogenous (the natural defense mechanisms produced by the human body) or exogenous, found in supplements and foods. OS is present at the early stages of chronic kidney disease, augments progressively with renal function deterioration, and is further exacerbated by renal replacement therapy. End-stage renal disease patients, on hemodialysis (HD) or peritoneal dialysis (PD), suffer from accelerated OS, which has been associated with increased risk for mortality and cardiovascular disease. During HD sessions, the bioincompatibility of dialyzers and dialysate trigger activation of white blood cells and formation of free radicals, while a significant loss of antioxidants is also present. In PD, the bioincompatibility of solutions, including high osmolality, elevated lactate levels, low pH, and accumulation of advanced glycation end-products trigger formation of prooxidants, while there is significant loss of vitamins in the ultrafiltrate. A number of exogenous antioxidants have been suggested to ameliorate OS in dialysis patients. Vitamins B, C, D, and E, coenzyme Q10, L-carnitine, a-lipoic acid, curcumin, green tea, flavonoids, polyphenols, omega-3 polyunsaturated fatty acids, statins, trace elements, and N-acetylcysteine have been studied as exogenous antioxidant supplements in both PD and HD patients.
Collapse
|