1
|
Ruskovska T, Budić-Leto I, Corral-Jara KF, Ajdžanović V, Arola-Arnal A, Bravo FI, Deligiannidou GE, Havlik J, Janeva M, Kistanova E, Kontogiorgis C, Krga I, Massaro M, Miler M, Milosevic V, Morand C, Scoditti E, Suárez M, Vauzour D, Milenkovic D. Systematic Bioinformatic Analyses of Nutrigenomic Modifications by Polyphenols Associated with Cardiometabolic Health in Humans-Evidence from Targeted Nutrigenomic Studies. Nutrients 2021; 13:2326. [PMID: 34371836 PMCID: PMC8308901 DOI: 10.3390/nu13072326] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia; (T.R.); (M.J.)
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| | - Karla Fabiola Corral-Jara
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
| | - Vladimir Ajdžanović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - Georgia-Eirini Deligiannidou
- Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.-E.D.); (C.K.)
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences, 16521 Prague, Czech Republic;
| | - Milkica Janeva
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia; (T.R.); (M.J.)
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Christos Kontogiorgis
- Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.-E.D.); (C.K.)
| | - Irena Krga
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (M.M.); (E.S.)
| | - Marko Miler
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Verica Milosevic
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Christine Morand
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (M.M.); (E.S.)
| | - Manuel Suárez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK;
| | - Dragan Milenkovic
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Lo Verso L, Matte JJ, Lapointe J, Talbot G, Bissonnette N, Blais M, Guay F, Lessard M. Impact of birth weight and neonatal nutritional interventions with micronutrients and bovine colostrum on the development of piglet immune response during the peri-weaning period. Vet Immunol Immunopathol 2020; 226:110072. [PMID: 32540688 DOI: 10.1016/j.vetimm.2020.110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
Immune system development of piglets is influenced by birth weight and colostrum and milk intake. Moreover, the dam transfer to piglets of vitamins A and D and copper, which play important role in immunity, is limited during lactation. In this study, we evaluated the potential of maternal and neonatal supplementations with vitamins A and D and copper, with or without neonatal supplementation of bovine colostrum (BC), to modulate the immune system development of low birth weight (LBW) and high birth weight (HBW) piglets during the peri-weaning period. Litters from 23 control sows (CONT) were assigned to one of the following treatments: 1) control (C); 2) oral administration at 2 and 8 days (d) of age of retinol-acetate, 25-hydroxyvitamin D and CuSO4 and exposure to UVB light for 15 min every second day from d 5 to d 21 (ADCu); 3) oral administration of dehydrated BC (4 g/d) from d 5 to d 10 (BC); 4) ADCu + BC. This experimental design was repeated with 24 sows fed extra daily supplements of 25-hydroxyvitamin D (4,000 IU), β-carotene (30,000 IU) and Cu-yeast (equivalent 45 mg of Cu) from 90 d of gestation until weaning at d 21 (SUPPL). Within each litter, 2 LBW and 2 HBW piglets were euthanized at d 16 and d 23 in order to characterize leukocyte subsets in mesenteric lymph nodes (MLN) and blood by flow cytometry, and to measure gene expression in the MLN and jejunal mucosa by qPCR. At d 16, results revealed that the percentages of γδ and cytotoxic T lymphocytes were significantly reduced in LBW compared to HBW piglets. The jejunal expression of interleukin (IL) 22 was also up-regulated, along with MLN expression of C-C Motif Chemokine Ligand 23, bone morphogenetic protein 2 and secreted phosphoprotein 1 (SPP1), whereas jejunal expression of tumor necrosis factor α was decreased in LBW piglets. At d 23, LBW piglets showed lower amounts of γδ T lymphocytes, higher percentages of CD3- and CD3-CD8α+CD16+ leukocytes (which include Natural killer cells) and lower jejunal expression of IL18. Furthermore, supplementation with BC increased the blood percentage of CD3-CD16+ leukocytes and reduced jejunal IL5 and MLN IL15 expression whereas supplementation with ADCu + BC increased jejunal TNF superfamily 13B and MLN SPP1 expression. Our results suggest that immune system development after birth differed between LBW and HBW piglets and that early dietary supplementation with BC and ADCu has the potential to modulate development of immune functions.
Collapse
Affiliation(s)
- Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada; Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada.
| | - J Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada
| | - Jérôme Lapointe
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2 Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2 Canada
| | - Frédéric Guay
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2 Canada
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2 Canada
| |
Collapse
|
3
|
Preparation of novel RGD-conjugated thermosensitive mPEG-PCL composite hydrogels and in vitro investigation of their impacts on adhesion-dependent cellular behavior. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Sailapu S, Dutta D, Sahoo AK, Ghosh SS, Chattopadhyay A. Single Platform for Gene and Protein Expression Analyses Using Luminescent Gold Nanoclusters. ACS OMEGA 2018; 3:2119-2129. [PMID: 30023824 PMCID: PMC6045389 DOI: 10.1021/acsomega.7b01739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/07/2018] [Indexed: 05/05/2023]
Abstract
A single platform for gene and protein expression studies is proposed to pursue rapid diagnostics. A common method to synthesize gold (Au) nanoclusters on both DNA and protein template was developed using a benchtop device. The method of synthesis is rapid and versatile and can be applied to different classes of DNA/protein. Employing luminescent Au nanoclusters as the signal-generating agents, the device enables carrying out reverse transcriptase polymerase chain reaction and array-based analyses of multiple genes/proteins simultaneously using switchable holders and custom-designed software. The device and methods were applied to evaluate gene profiling related to apoptosis in HeLa cancer cells and further to analyze the protein expressions of glutathione-S-transferase (GST) and GST-tagged human granulocyte macrophage colony-stimulating factor (GST-hGMCSF) recombinant proteins purified from bacterial strains of BL21(DE3) Escherichia coli (E. coli). The device with user-friendly methods for diagnosis using the luminescence of Au nanoclusters offers potential use in disease diagnostics with a vision to extend health care facilities especially to remote geographical locations.
Collapse
Affiliation(s)
- Sunil
Kumar Sailapu
- Centre
for Nanotechnology, Department of Biosciences and Bioengineering, and Department of
Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781 039, Assam, India
| | - Deepanjalee Dutta
- Centre
for Nanotechnology, Department of Biosciences and Bioengineering, and Department of
Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781 039, Assam, India
| | - Amaresh Kumar Sahoo
- Centre
for Nanotechnology, Department of Biosciences and Bioengineering, and Department of
Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781 039, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre
for Nanotechnology, Department of Biosciences and Bioengineering, and Department of
Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781 039, Assam, India
| | - Arun Chattopadhyay
- Centre
for Nanotechnology, Department of Biosciences and Bioengineering, and Department of
Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781 039, Assam, India
| |
Collapse
|
5
|
Soliman AT, De Sanctis V, Yassin M, Soliman N. Iron deficiency anemia and glucose metabolism. ACTA BIO-MEDICA : ATENEI PARMENSIS 2017; 88:112-118. [PMID: 28467345 PMCID: PMC6166192 DOI: 10.23750/abm.v88i1.6049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Iron deficiency anemia (IDA) is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. IDA appears to be more common in diabetic patients compared to non-diabetic population. Iron deficiency (ID) and IDA can impair glucose homeostasis in animals and human and may negatively affect glycemic control and predispose to more complications in diabetic patients. On the other hand diabetes and its complications are associated with anemia and its correction improves diabetes control and may prevent or delay the occurrence of complications. Physicians treating this form of anemia should be aware of its negative effect on glycemic control in normal and diabetic patients (both type 1 and type 2). They should prevent ID and treat early all those with IDA.This brief review aims to enlighten the different effects of IDA on glucose metabolism in normal and diabetic patients.
Collapse
Affiliation(s)
- Ashraf T Soliman
- Department of Pediatrics, Alexandria University Children Hospital, Elchatby, Alexandria, Egypt.
| | | | | | | |
Collapse
|
6
|
Adipose tissue gene expression is differentially regulated with different rates of weight loss in overweight and obese humans. Int J Obes (Lond) 2016; 41:309-316. [PMID: 27840413 DOI: 10.1038/ijo.2016.201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/11/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES Moderate weight loss (WL) can ameliorate adverse health effects associated with obesity, reflected by an improved adipose tissue (AT) gene expression profile. However, the effect of rate of WL on the AT transcriptome is unknown. We investigated the global AT gene expression profile before and after two different rates of WL that resulted in similar total WL, and after a subsequent weight stabilization period. SUBJECTS/METHODS In this randomized controlled trial, 25 male and 28 female individuals (body mass index (BMI): 28-35 kg m-2) followed either a low-calorie diet (LCD; 1250 kcal day-1) for 12 weeks or a very-low-calorie diet (VLCD; 500 kcal day-1) for 5 weeks (WL period) and a subsequent weight stable (WS) period of 4 weeks. The WL period and WS period together is termed dietary intervention (DI) period. Abdominal subcutaneous AT biopsies were collected for microarray analysis and gene expression changes were calculated for all three periods in the LCD group, VLCD group and between diets (ΔVLCD-ΔLCD). RESULTS WL was similar between groups during the WL period (LCD: -8.1±0.5 kg, VLCD: -8.9±0.4 kg, difference P=0.25). Overall, more genes were significantly regulated and changes in gene expression appeared more pronounced in the VLCD group compared with the LCD group. Gene sets related to mitochondrial function, adipogenesis and immunity/inflammation were more strongly upregulated on a VLCD compared with a LCD during the DI period (positive ΔVLCD-ΔLCD). Neuronal and olfactory-related gene sets were decreased during the WL period and DI period in the VLCD group. CONCLUSIONS The rate of WL (LCD vs VLCD), with similar total WL, strongly regulates AT gene expression. Increased mitochondrial function, angiogenesis and adipogenesis on a VLCD compared with a LCD reflect potential beneficial diet-induced changes in AT, whereas differential neuronal and olfactory regulation suggest functions of these genes beyond the current paradigm.
Collapse
|
7
|
Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium. Nutrients 2016; 8:nu8050267. [PMID: 27164134 PMCID: PMC4882680 DOI: 10.3390/nu8050267] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.
Collapse
|
8
|
Food Deprivation Affects the miRNome in the Lactating Goat Mammary Gland. PLoS One 2015; 10:e0140111. [PMID: 26473604 PMCID: PMC4608672 DOI: 10.1371/journal.pone.0140111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Background Nutrition affects milk composition thus influencing its nutritional properties. Nutrition also modifies the expression of mammary genes, whose regulation is not fully understood. MicroRNAs (miRNA) are small non coding RNA which are important post-transcriptional regulators of gene expression by targeting messenger RNAs. Our goal was to characterize miRNA whose expression is regulated by nutrition in the lactating goat mammary gland, which may provide clues to deciphering regulations of the biosynthesis and secretion of milk components. Methodology/principal findings Using high-throughput sequencing technology, miRNomes of the lactating mammary gland were established from lactating goats fed ad libitum or deprived of food for 48h affecting milk production and composition. High throughput miRNA sequencing revealed 30 miRNA with an expression potentially modulated by food deprivation; 16 were down-regulated and 14 were up-regulated. Diana-microT predictive tools suggested a potential role for several nutriregulated miRNA in lipid metabolism. Among the putative targets, 19 were previously identified as differently expressed genes (DEG). The functions of these 19 DEG revealed, notably, their involvement in tissue remodelling. Conclusion/significance In conclusion, this study offers the first evidence of nutriregulated miRNA in the ruminant mammary gland. Characterization of these 30 miRNA could contribute to a clearer understanding of gene regulation in the mammary gland in response to nutrition.
Collapse
|
9
|
Liu Y, Wang P, Li S, Yin L, Shen H, Liu R. Interaction of key pathways in sorafenib-treated hepatocellular carcinoma based on a PCR-array. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3027-3035. [PMID: 26045814 PMCID: PMC4440123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to identify the key pathways and to explore the mechanism of sorafenib in inhibiting hepatocellular carcinoma (HCC). The gene expression profile of GSE33621, including 6 sorafenib treated group and 6 control samples, was downloaded from the GEO (Gene Expression Omnibus) database. The differentially expressed genes (DEGs) in HCC samples were screened using the ΔΔCt method with the homogenized internal GAPDH. Also, the functions and pathways of DEGs were analyzed using the DAVID. Moreover, the significant pathways of DEGs that involved in HCC were analyzed based on the Latent pathway identification analysis (LPIA). A total of 44 down-regulated DEGs were selected in HCC samples. Also, there were 84 biological pathways that these 44 DEGs involved in. Also, LPIA showed that Osteoclast differentiation and hsa04664-Fc epsilon RI signaling pathway was the most significant interaction pathways. Moreover, Apoptosis, Toll-like receptor signaling pathway, Chagas disease, and T cell receptor signaling pathway were the significant pathways that interacted with hsa04664. In addition, DEGs such as AKT1 (v-akt murine thymoma viral oncogene homolog 1), TNF (tumor necrosis factor), SYK (spleen tyrosine kinase), and PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 1 (alpha)) were the common genes that involved in the significant pathways. Several pathway interaction pairs that caused by several downregulated genes such as SYK, PI3K, AKT1, and TNF, were identified play curial role in sorafenib treated HCC. Sorafenib played important inhibition roles in HCC by affecting a complicate pathway interaction network.
Collapse
Affiliation(s)
- Yan Liu
- Department of Interventional Radiology, The Affiliated Tumor Hospital of Harbin Medical University Harbin 150040, China
| | - Ping Wang
- Department of Interventional Radiology, The Affiliated Tumor Hospital of Harbin Medical University Harbin 150040, China
| | - Shijie Li
- Department of Interventional Radiology, The Affiliated Tumor Hospital of Harbin Medical University Harbin 150040, China
| | - Linan Yin
- Department of Interventional Radiology, The Affiliated Tumor Hospital of Harbin Medical University Harbin 150040, China
| | - Haiyang Shen
- Department of Interventional Radiology, The Affiliated Tumor Hospital of Harbin Medical University Harbin 150040, China
| | - Ruibao Liu
- Department of Interventional Radiology, The Affiliated Tumor Hospital of Harbin Medical University Harbin 150040, China
| |
Collapse
|
10
|
Davis MR, Hester KK, Shawron KM, Lucas EA, Smith BJ, Clarke SL. Comparisons of the iron deficient metabolic response in rats fed either an AIN-76 or AIN-93 based diet. Nutr Metab (Lond) 2012; 9:95. [PMID: 23110872 PMCID: PMC3538620 DOI: 10.1186/1743-7075-9-95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/25/2012] [Indexed: 12/31/2022] Open
Abstract
Background Previous studies examining the metabolic consequences of dietary iron deficiency have reported elevated serum glucose concentrations in iron-deficient animals. Importantly, the majority of these findings were observed using an earlier version of a laboratory animal diet (AIN-76A) in which the primary carbohydrate source was sucrose – a disaccharide known to negatively impact both glucose and lipid homeostasis. The AIN-76A diet formula was improved in 1993 (AIN-93) to optimize animal nutrition with a major change being the substitution of cornstarch for sucrose. Therefore, we sought to examine the effects of iron deficiency on steady-state glucose homeostasis and the hepatic expression of glucose- and lipid-related genes in rats fed an iron-deficient diet based on either an AIN-76A or AIN-93 diet. Methods The study design consisted of 6 treatment groups: control (C; 40 mg Fe/kg diet), iron deficient (ID; ≤ 3 mg Fe/kg diet), or pair-fed (PF; 40 mg Fe/kg) fed either an AIN-76A or AIN-93 diet for 21 d. Hemoglobin and hematocrit were measured in whole blood. Serum insulin and cortisol were measure by ELISA. Serum glucose and triacylglycerols were measured by standard colorimetric enzyme assays. Alterations in hepatic gene expression were determined by real-time qPCR. Results Hemoglobin and hematocrit were significantly reduced in both ID groups compared to the C and PF groups. Similarly, animals in the both ID groups exhibited elevated steady-state levels of blood glucose and insulin, and significantly decreased levels of circulating cortisol compared to their respective PF controls. Serum triacyglycerols were only increased in ID animals consuming the AIN-76A diet. Hepatic gene expression analyses revealed a ~4- and 3-fold increase in the expression of glucokinase and pyruvate dehydrogenase kinase-4 mRNA, respectively, in the ID group on either diet compared to their respective PF counterparts. In contrast, the expression of lipogenic genes was significantly elevated in the AIN-76 ID group, while expression of these genes was unaffected by iron status in the AIN-93 ID group. Conclusions These results indicate that an impaired iron status is sufficient to alter glucose homeostasis, though alterations in lipid metabolism associated with ID are only observed in animals receiving the AIN-76A diet.
Collapse
Affiliation(s)
- McKale R Davis
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Processes underlying the nutritional programming of embryonic development by iron deficiency in the rat. PLoS One 2012; 7:e48133. [PMID: 23110188 PMCID: PMC3482177 DOI: 10.1371/journal.pone.0048133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/27/2012] [Indexed: 01/15/2023] Open
Abstract
Poor iron status is a global health issue, affecting two thirds of the world population to some degree. It is a particular problem among pregnant women, in both developed and developing countries. Feeding pregnant rats a diet deficient in iron is associated with both hypertension and reduced nephron endowment in adult male offspring. However, the mechanistic pathway leading from iron deficiency to fetal kidney development remains elusive. This study aimed to establish the underlying processes associated with iron deficiency by assessing gene and protein expression changes in the rat embryo, focussing on the responses occurring at the time of the nutritional insult. Analysis of microarray data showed that iron deficiency in utero resulted in the significant up-regulation of 979 genes and down-regulation of 1545 genes in male rat embryos (d13). Affected processes associated with these genes included the initiation of mitosis, BAD-mediated apoptosis, the assembly of RNA polymerase II preinitiation complexes and WNT signalling. Proteomic analyses highlighted 7 proteins demonstrating significant up-regulation with iron deficiency and the down-regulation of 11 proteins. The main functions of these key proteins included cell proliferation, protein transport and folding, cytoskeletal remodelling and the proteasome complex. In line with our recent work, which identified the perturbation of the proteasome complex as a generalised response to in utero malnutrition, we propose that iron deficiency alone leads to a more specific failure in correct protein folding and transport. Such an imbalance in this delicate quality-control system can lead to cellular dysfunction and apoptosis. Therefore these findings offer an insight into the underlying mechanisms associated with the development of the embryo during conditions of poor iron status, and its health in adult life.
Collapse
|
12
|
Perkins JR, Dawes JM, McMahon SB, Bennett DLH, Orengo C, Kohl M. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data. BMC Genomics 2012; 13:296. [PMID: 22748112 PMCID: PMC3443438 DOI: 10.1186/1471-2164-13-296] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR) technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s). Results We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html Conclusions These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things) read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples.
Collapse
Affiliation(s)
- James R Perkins
- Institute of Structural and Molecular Biology, University College of London, London, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Davis MR, Rendina E, Peterson SK, Lucas EA, Smith BJ, Clarke SL. Enhanced expression of lipogenic genes may contribute to hyperglycemia and alterations in plasma lipids in response to dietary iron deficiency. GENES AND NUTRITION 2012; 7:415-25. [PMID: 22228222 DOI: 10.1007/s12263-011-0278-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022]
Abstract
Iron deficiency (ID) remains a public health concern affecting ~25% of the world's population. Metabolic consequences of ID include elevated plasma glucose concentrations consistent with increased reliance on glucose as a metabolic substrate, though the mechanisms controlling these responses remain unclear. To further characterize the metabolic response to ID, weanling male Sprague-Dawley rats were fed either a control (C; 40 mg Fe/kg diet) or iron-deficient (ID; 3 mg Fe/kg diet) diet or were pair-fed (PF) the C diet to the level of intake of the ID group for 21 days. In addition to reductions in hemoglobin, hematocrit, and plasma iron, the ID group also exhibited higher percent body fat and plasma triglycerides compared to the PF group. Steady-state levels of both plasma glucose and insulin increased 40 and 45%, respectively, in the ID group compared to the PF group. Plasma cortisol levels were decreased 67% in the ID group compared to the PF diet group. The systematic evaluation of the expression of genes involved in insulin signaling, glucose metabolism, and fatty acid metabolism in the liver and skeletal muscle revealed significant alterations in the expression of 48 and 52 genes in these tissues, respectively. A significant concurrent increase in lipogenic gene expression and decrease in gene expression related to β-oxidation in both the liver and skeletal muscle, in combination with differential tissue expression of genes involved in glucose metabolism, provides novel insight into the adaptive metabolic response in rodent models of severe iron deficiency anemia.
Collapse
Affiliation(s)
- McKale R Davis
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK, 74078, USA
| | | | | | | | | | | |
Collapse
|
14
|
Swali A, McMullen S, Hayes H, Gambling L, McArdle HJ, Langley-Evans SC. Cell cycle regulation and cytoskeletal remodelling are critical processes in the nutritional programming of embryonic development. PLoS One 2011; 6:e23189. [PMID: 21858025 PMCID: PMC3157362 DOI: 10.1371/journal.pone.0023189] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/11/2011] [Indexed: 01/22/2023] Open
Abstract
Many mechanisms purport to explain how nutritional signals during early development are manifested as disease in the adult offspring. While these describe processes leading from nutritional insult to development of the actual pathology, the initial underlying cause of the programming effect remains elusive. To establish the primary drivers of programming, this study aimed to capture embryonic gene and protein changes in the whole embryo at the time of nutritional insult rather than downstream phenotypic effects. By using a cross-over design of two well established models of maternal protein and iron restriction we aimed to identify putative common “gatekeepers” which may drive nutritional programming. Both protein and iron deficiency in utero reduced the nephron complement in adult male Wistar and Rowett Hooded Lister rats (P<0.05). This occurred in the absence of damage to the glomerular ultrastructure. Microarray, proteomic and pathway analyses identified diet-specific and strain-specific gatekeeper genes, proteins and processes which shared a common association with the regulation of the cell cycle, especially the G1/S and G2/M checkpoints, and cytoskeletal remodelling. A cell cycle-specific PCR array confirmed the down-regulation of cyclins with protein restriction and the up-regulation of apoptotic genes with iron deficiency. The timing and experimental design of this study have been carefully controlled to isolate the common molecular mechanisms which may initiate the sequelae of events involved in nutritional programming of embryonic development. We propose that despite differences in the individual genes and proteins affected in each strain and with each diet, the general response to nutrient deficiency in utero is perturbation of the cell cycle, at the level of interaction with the cytoskeleton and the mitotic checkpoints, thereby diminishing control over the integrity of DNA which is allowed to replicate. These findings offer novel insight into the primary causes and mechanisms leading to the pathologies which have been identified by previous programming studies.
Collapse
Affiliation(s)
- Angelina Swali
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom.
| | | | | | | | | | | |
Collapse
|
15
|
Pandey P, Qin S, Ho J, Zhou J, Kreidberg JA. Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease. BMC SYSTEMS BIOLOGY 2011; 5:56. [PMID: 21518438 PMCID: PMC3111376 DOI: 10.1186/1752-0509-5-56] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/25/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation throughout the kidney parenchyma. It is caused by mutations in either of two genes, PKD1 and PKD2. Mice that lack functional Pkd1 (Pkd1⁻/⁻), develop rapidly progressive cystic disease during embryogenesis, and serve as a model to study human ADPKD. Genome wide transcriptome reprogramming and the possible roles of micro-RNAs (miRNAs) that affect the initiation and progression of cyst formation in the Pkd1⁻/⁻ have yet to be studied. miRNAs are small, regulatory non-coding RNAs, implicated in a wide spectrum of biological processes. Their expression levels are altered in several diseases including kidney cancer, diabetic nephropathy and PKD. RESULTS We examined the molecular pathways that modulate renal cyst formation and growth in the Pkd1⁻/⁻ model by performing global gene-expression profiling in embryonic kidneys at days 14.5 and 17.5. Gene Ontology and gene set enrichment analysis were used to identify overrepresented signaling pathways in Pkd1⁻/⁻ kidneys. We found dysregulation of developmental, metabolic, and signaling pathways (e.g. Wnt, calcium, TGF-β and MAPK) in Pkd1⁻/⁻ kidneys. Using a comparative transcriptomics approach, we determined similarities and differences with human ADPKD: ~50% overlap at the pathway level among the mis-regulated pathways was observed. By using computational approaches (TargetScan, miRanda, microT and miRDB), we then predicted miRNAs that were suggested to target the differentially expressed mRNAs. Differential expressions of 9 candidate miRNAs, miRs-10a, -30a-5p, -96, -126-5p, -182, -200a, -204, -429 and -488, and 16 genes were confirmed by qPCR. In addition, 14 candidate miRNA:mRNA reciprocal interactions were predicted. Several of the highly regulated genes and pathways were predicted as targets of miRNAs. CONCLUSIONS We have described global transcriptional reprogramming during the progression of PKD in the Pkd1⁻/⁻ model. We propose a model for the cascade of signaling events involved in cyst formation and growth. Our results suggest that several miRNAs may be involved in regulating signaling pathways in ADPKD. We further describe novel putative miRNA:mRNA signatures in ADPKD, which will provide additional insights into the pathogenesis of this common genetic disease in humans.
Collapse
Affiliation(s)
- Priyanka Pandey
- Department of Medicine, Children's Hospital Boston; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shan Qin
- Department of Medicine, Children's Hospital Boston; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jacqueline Ho
- Current address: Division of Nephrology, Department of Pediatrics, University of Pittsburg School of Medicine, Pittsburg, PA, 15224, USA
| | - Jing Zhou
- Department of Medicine, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School. Boston, MA, 02115, USA
| | - Jordan A Kreidberg
- Department of Medicine, Children's Hospital Boston; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| |
Collapse
|
16
|
Bolleyn J, Fraczek J, Vinken M, Lizarraga D, Gaj S, van Delft JHM, Rogiers V, Vanhaecke T. Effect of Trichostatin A on miRNA expression in cultures of primary rat hepatocytes. Toxicol In Vitro 2011; 25:1173-82. [PMID: 21513791 DOI: 10.1016/j.tiv.2011.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/01/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
In the present study, the effect of Trichostatin A (TSA), a histone deacetylase inhibitor, was investigated on the microRNA (miR, miRNA) expression profile in cultured primary rat hepatocytes by means of microarray analysis. Simultaneously, albumin secretory capacity and morphological features of the hepatocytes were evaluated throughout the culture time. In total, 25 out of 348 miRNAs were found to be differentially expressed between freshly isolated hepatocytes and 7-day cultured cells. Nineteen of these miRNAs were connected with 'general metabolism'. miR-21 and miR-126 were shown to be the most up and down regulated miRs upon cultivation and could be linked to the proliferative response triggered in the hepatocytes upon their isolation from the liver. miR-379 and miR-143, on the other hand, were found to be the most up and down regulated miRs upon TSA treatment. Together with the higher expression of miR-122 observed in TSA-treated versus non-treated cultures, we hypothesize that the changes observed for miR-122, miR-143 and miR-379 could be related to the inhibitory effects of TSA on hepatocellular proliferation.
Collapse
Affiliation(s)
- Jennifer Bolleyn
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
p53-Dependent anticancer effects of leptomycin B on lung adenocarcinoma. Cancer Chemother Pharmacol 2010; 67:1369-80. [PMID: 20803015 DOI: 10.1007/s00280-010-1434-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/13/2010] [Indexed: 01/21/2023]
Abstract
PURPOSE Leptomycin B (LMB) and/or its derivatives are considered a novel class of cancer therapeutics through blocking chromosome maintenance region 1, which mediates p53 nuclear export. The objectives of the present study were to first evaluate the cytotoxic effects of LMB on a normal human lung epithelial cell line (BEAS-2B) and three human lung adenocarcinoma cell lines with various p53 status (wild type: A549, mutant: NCI-H522, and null: NCI-H358) and then to identify LMB-induced gene expression alterations in human p53 signaling pathway. METHODS Cells were treated with 0.01-100 nM LMB or 0.1% ethanol (vehicle control) for 4-72 h. Gene expression analyses using gene array for 84 genes involved in p53-mediated signaling pathways were performed in A549 and NCI-H358 after treatment with 20 nM LMB or vehicle control for 24 h. RESULTS Cytotoxic results from MTS assays revealed a significant dose- and time-dependent effect of LMB on all cell lines. However, this effect was more pronounced in cancer cells than in normal cells, and cancer cells with p53 wild type tended to be less sensitive than those with p53 mutant or null. A total of 23 genes, predominantly involved in apoptosis and cell cycle/proliferation, were significantly altered in A549 after LMB treatment, while no strong modulating effects were observed in NCI-H358. The protein expression of two selected genes, p21 and survivin, was further confirmed by Western blots. CONCLUSION Our results suggest that LMB has anti-cancer potential and provides a new regimen of individualized therapy for lung cancer treatment.
Collapse
|
18
|
Lamoureux DP, Kobzik L, Fedulov AV. Customized PCR-array analysis informed by gene-chip microarray and biological hypothesis reveals pathways involved in lung inflammatory response to titanium dioxide in pregnancy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:596-606. [PMID: 20391139 PMCID: PMC4427840 DOI: 10.1080/15287390903566641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Validation of gene-chip microarray results is one of the challenges in genomic studies. The successful use of a custom-designed 96-well polymerase chain reaction (PCR) array to study the unexpected inflammatory effect of environmental titanium dioxide (TiO2) particles on the lungs of pregnant mice, with similar results not seen in control mice, is reported. In our approach, selection of candidate genes for the custom PCR array was informed by prior gene-chip microarray profiling. Results demonstrated multiple upregulation of genes in the lungs of pregnant but not control mice produced by TiO2 exposure. Customized PCR array is a flexible tool that offers the ability to combine the "blind" genome-wide scan with a hypothesis-driven approach, by including both the "candidate" genes for validation positively identified by the microarray and biologically relevant "suspects" that failed to be found in the genomic data. Compared to conventional gene-by-gene qPCR or manufacturer-preset pathway kits, this technique provides a cost-effective and time-saving method of analysis and allows for a strong, easily detectable signal. Genes with confirmed differential expression were further used for pathway analysis and indicated involvement in several biologically relevant pathways including allergy mediator signaling in dendritic cells. Finally, an analytical network was created that will inform further mechanistic studies. The dual purpose of the work was to demonstrate that the novel custom PCR array is a convenient approach to validate the microarray results, and to obtain biologically significant data on TiO2-induced inflammation by following the PCR array with pathway analysis, which provided feasible hypotheses to support future experimental studies.
Collapse
Affiliation(s)
- Denise P Lamoureux
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Griffiths KG, Mayhew GF, Zink RL, Erickson SM, Fuchs JF, McDermott CM, Christensen BM, Michalski ML. Use of microarray hybridization to identify Brugia genes involved in mosquito infectivity. Parasitol Res 2009; 106:227-35. [PMID: 19894065 DOI: 10.1007/s00436-009-1655-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 10/06/2009] [Indexed: 01/24/2023]
Abstract
Brugia malayi and Brugia pahangi microfilariae (mf) require a maturation period of at least 5 days in the mammalian host to successfully infect laboratory mosquitoes. This maturation process coincides with changes in the surface composition of mf that likely are associated with changes in gene expression. To test this hypothesis, we verified the differential infectivity of immature (< or =3 day) and mature (>30 day) Brugia mf for black-eyed Liverpool strain of Aedes aegypti and then assessed transcriptome changes associated with microfilarial maturation by competitively hybridizing microfilarial cDNAs to the B. malayi oligonucleotide microarray. We identified transcripts differentially abundant in immature (94 in B. pahangi and 29 in B. malayi) and mature (64 in B. pahangi and 14 in B. malayi) mf. In each case, >40% of Brugia transcripts shared no similarity to known genes or were similar to genes with unknown function; the remaining transcripts were categorized by putative function based on sequence similarity to known genes/proteins. Microfilarial maturation was not associated with demonstrable changes in the abundance of transmembrane or secreted proteins; however, immature mf expressed more transcripts associated with immune modulation, neurotransmission, transcription, and cellular cytoskeleton elements, while mature mf displayed increased transcripts potentially encoding hypodermal/muscle and surface molecules, e.g., cuticular collagens and sheath components. The results of the homologous B. malayi microarray hybridization were validated by quantitative reverse transcriptase polymerase chain reaction. These findings preliminarily lend support to the underlying hypothesis that changes in microfilarial gene expression drive maturation-associated changes that influence the parasite to develop in compatible vectors.
Collapse
Affiliation(s)
- Kathryn G Griffiths
- Department of Biology and Microbiology, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI, 54901, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
García-Cañas V, Simó C, León C, Cifuentes A. Advances in Nutrigenomics research: novel and future analytical approaches to investigate the biological activity of natural compounds and food functions. J Pharm Biomed Anal 2009; 51:290-304. [PMID: 19467817 DOI: 10.1016/j.jpba.2009.04.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/06/2009] [Accepted: 04/09/2009] [Indexed: 01/03/2023]
Abstract
In recent years, nutrition research has moved from classical epidemiology and physiology to molecular biology and genetics. Following this trend, Nutrigenomics has emerged as a novel and multidisciplinary research field in nutritional science that aims to elucidate how diet can influence human health. It is already well known that bioactive food compounds can interact with genes affecting transcription factors, protein expression and metabolite production. The study of these complex interactions requires the development of advanced analytical approaches combined with bioinformatics. Thus, to carry out these studies Transcriptomics, Proteomics and Metabolomics approaches are employed together with an adequate integration of the information that they provide. In this article, an overview of the current methodologies and a thorough revision of the advances in analytical technologies and their possibilities for future developments and applications in the field of Nutrigenomics is provided.
Collapse
Affiliation(s)
- V García-Cañas
- Institute of Industrial Fermentations (CSIC), Juan de la Cierva 3, Madrid, Spain
| | | | | | | |
Collapse
|