1
|
Flores-Sierra J, Arredondo-Guerrero M, Cervantes-Paz B, Rodríguez-Ríos D, Alvarado-Caudillo Y, Nielsen FC, Wrobel K, Wrobel K, Zaina S, Lund G. The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo. Lipids Health Dis 2016; 15:75. [PMID: 27068706 PMCID: PMC4828757 DOI: 10.1186/s12944-016-0243-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022] Open
Abstract
Background The deleterious effects of dietary trans fatty acids (tFAs) on human health are well documented. Although significantly reduced or banned in various countries, tFAs may trigger long-term responses that would represent a valid human health concern, particularly if tFAs alter the epigenome. Methods Based on these considerations, we asked whether the tFA elaidic acid (EA; tC18:1) has any effects on global DNA methylation and the transcriptome in cultured human THP-1 monocytes, and whether the progeny of EA-supplemented dams during either pregnancy or lactation in mice (n = 20 per group) show any epigenetic change after exposure. Results EA induced a biphasic effect on global DNA methylation in THP-1 cells, i.e. hypermethylation in the 1–50 μM concentration range, followed by hypomethylation up to the 200 μM dose. On the other hand, the cis isomer oleic acid (OA), a fatty acid with documented beneficial effects on human health, exerted a distinct response, i.e. its effects were weaker and only partially overlapping with EA’s. The maximal differential response between EA and OA was observed at the 50 μM dose. Array expression data revealed that EA induced a pro-inflammatory and adipogenic transcriptional profile compared with OA, although with modest effects on selected (n = 9) gene promoter methylation. In mice, maternal EA supplementation in utero or via the breastmilk induced global adipose tissue DNA hypermethylation in the progeny, that was detectable postnatally at the age of 3 months. Conclusion We document that global DNA hypermethylation is a specific and consistent response to EA in cell culture and in mice, and that EA may exert long-term effects on the epigenome following maternal exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0243-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Flores-Sierra
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico
| | - Martín Arredondo-Guerrero
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico.,Tecnológico de Monterrey, Leon Campus, Leon, Gto., Mexico
| | - Braulio Cervantes-Paz
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, 36821, Irapuato, Gto., Mexico
| | - Dalia Rodríguez-Ríos
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, 36821, Irapuato, Gto., Mexico
| | - Yolanda Alvarado-Caudillo
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katarzyna Wrobel
- Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato, Gto., Mexico
| | - Kazimierz Wrobel
- Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato, Gto., Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Gto., Mexico
| | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, 36821, Irapuato, Gto., Mexico.
| |
Collapse
|
2
|
Isomer-specific effects of conjugated linoleic acid on HDL functionality associated with reverse cholesterol transport. J Nutr Biochem 2014; 26:165-72. [PMID: 25468613 DOI: 10.1016/j.jnutbio.2014.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/28/2014] [Accepted: 10/01/2014] [Indexed: 01/03/2023]
Abstract
High-density lipoproteins (HDLs) are atheroprotective because of their role in reverse cholesterol transport. The intestine is involved in this process because it synthesizes HDL, removes cholesterol from plasma and excretes it into the lumen. We investigated the role of selected dietary fatty acids on intestinal cholesterol uptake and HDL functionality. Caco-2 monolayers grown on Transwells were supplemented with either palmitic, palmitoleic, oleic, linoleic, docosahexaenoic, eicosapentaenoic, arachidonic or conjugated linoleic acids (CLAs): c9,t11-CLA; t9,t11-CLA; c10,t12-CLA. Cells synthesized HDL in the basolateral compartment for 24 h in the absence or presence of an antibody to SR-BI (aSR-BI), which inhibits its interaction with HDL. Free cholesterol (FC) accumulated to a greater extent in the presence than in the absence of aSR-BI, indicating net uptake of FC by SR-BI. Uptake's efficiency was significantly decreased when cells were treated with c9,t11-CLA relative to the other fatty acids. These differences were associated with lower HDL functionality, since neither SR-BI protein expression nor expression and alternative splicing of other genes involved lipid metabolism were affected. Only INSIG2 expression was decreased, with no increase of its target genes. Increasing pre-β-HDL synthesis, by inducing ABCA1 and adding APOA1, resulted in reduced uptake of FC by SR-BI after c9,t11-CLA treatment, indicating reduced functionality of pre-β-HDL. Conversely, treatment with c9,t11-CLA resulted in a greater uptake of FC and esterified cholesterol from mature HDL. Therefore, Caco-2 monolayers administered c9,t11-CLA produced a nonfunctional pre-β-HDL but took up cholesterol more efficiently via SR-BI from mature HDL.
Collapse
|
3
|
Yasui K, Tanabe H, Miyoshi N, Suzuki T, Goto S, Taguchi K, Ishigami Y, Paeng N, Fukutomi R, Imai S, Isemura M. Effects of (-)-epigallocatechin-3-O-gallate on expression of gluconeogenesis-related genes in the mouse duodenum. ACTA ACUST UNITED AC 2012; 32:313-20. [PMID: 22033300 DOI: 10.2220/biomedres.32.313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Green tea has been shown to have many beneficial health effects. We have previously reported that dietary (-)-epigallocatechin-3-O-gallate (EGCG), the major polyphenol in green tea, reduced gene expressions of gluconeogenic enzymes, glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), in the normal mouse liver. In the present study, we examined the effects of intragastrical administration of EGCG on the expression of gluconeogenesis-related genes in the mouse intestine. The results of experiments with the semi-quantitative reverse transcription-polymerase chain reaction indicated that EGCG at 0.6 mg/head caused a reduced expression of G6Pase, PEPCK, hepatocyte nuclear factor 1α (HNF1α), and HNF4α. Experiments using the quantitative real-time polymerase chain reaction confirmed these effects. We then examined the effects of EGCG using human colon carcinoma Caco-2 cells stimulated with dexamethasone and dibutyryl cAMP. The results were generally consistent with those from the experiments in vivo. The present findings suggest EGCG to contribute to the beneficial effects of green tea on diabetes, obesity, and cancer by modulating gene expression in the intestine.
Collapse
Affiliation(s)
- Kensuke Yasui
- Health Care Research Center, Nisshin Pharma Inc., Fujimino, Saitama 356-8511
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Steps towards reducing chronic disease progression are continuously being taken through the form of genomic research. Studies over the last year have highlighted more and more polymorphisms, pathways and interactions responsible for metabolic disorders such as cardiovascular disease, obesity and dyslipidemia. RECENT FINDINGS Many of these chronic illnesses can be partially blamed by altered lipid metabolism, combined with individual genetic components. Critical evaluation and comparison of these recent studies is essential in order to comprehend the results, conclusions and future prospects in the field of genomics as a whole. Recent literature elucidates significant gene--diet and gene--environment interactions resulting in altered lipid metabolism, inflammation and other metabolic imbalances leading to cardiovascular disease and obesity. SUMMARY Epigenetic and epistatic interactions are now becoming more significantly associated with such disorders, as genomic research digs deeper into the complex nature of genetic individuality and heritability. The vast array of data collected from genome-wide association studies must now be empowered and explored through more complex interaction studies, using standardized methods and larger sample sizes. In doing so the etiology of chronic disease progression will be further understood.
Collapse
Affiliation(s)
- José M Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Centre on Aging at Tufts University, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
5
|
Hand KV, Bruen CM, O'Halloran F, Giblin L, Green BD. Acute and chronic effects of dietary fatty acids on cholecystokinin expression, storage and secretion in enteroendocrine STC-1 cells. Mol Nutr Food Res 2010; 54 Suppl 1:S93-S103. [PMID: 20352619 DOI: 10.1002/mnfr.200900343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholecystokinin (CCK) is a peptide hormone secreted from the I-cells of the intestine and it has important physiological actions related to appetite regulation and satiety. In this study we used STC-1 cells to investigate the effects of common dietary-derived fatty acids (FAs) on I-cell secretory function and metabolism. We extend earlier studies by measuring the acute and chronic effects of 11 FAs on CCK secretion, cellular CCK content, CCK mRNA levels, cellular DNA synthesis, cellular viability and cytotoxicity. FAs were selected in order to assess the importance of chain length, degree of saturation, and double bond position and conformation. The results demonstrate that secretory responses elicited by dietary FAs are highly selective. For example, altering the conformation of a double bond from cis to trans (i.e. oleic acid versus elaidic acid) completely abolishes CCK secretion. Lauric acid appears to adversely affect I-cell metabolism and arachidonic acid suppresses DNA synthesis. Our studies reveal for the first time that conjugated linoleic acid isoforms are particularly potent CCK secretagogues, which also boost intracellular stores of CCK. These actions of conjugated linoleic acid may explain satiating actions observed in dietary intervention studies.
Collapse
Affiliation(s)
- Katharine V Hand
- Institute of Agri-Food and Land Use, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | | | | | |
Collapse
|