1
|
Li H, Xu Y, Jiang Y, Jiang Z, Otiz-Guzman J, Morrill JC, Cai J, Mao Z, Xu Y, Arenkiel BR, Huang C, Tong Q. The melanocortin action is biased toward protection from weight loss in mice. Nat Commun 2023; 14:2200. [PMID: 37069175 PMCID: PMC10110624 DOI: 10.1038/s41467-023-37912-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
The melanocortin action is well perceived for its ability to regulate body weight bidirectionally with its gain of function reducing body weight and loss of function promoting obesity. However, this notion cannot explain the difficulty in identifying effective therapeutics toward treating general obesity via activation of the melanocortin action. Here, we provide evidence that altered melanocortin action is only able to cause one-directional obesity development. We demonstrate that chronic inhibition of arcuate neurons expressing proopiomelanocortin (POMC) or paraventricular hypothalamic neurons expressing melanocortin receptor 4 (MC4R) causes massive obesity. However, chronic activation of these neuronal populations failed to reduce body weight. Furthermore, gain of function of the melanocortin action through overexpression of MC4R, POMC or its derived peptides had little effect on obesity prevention or reversal. These results reveal a bias of the melanocortin action towards protection of weight loss and provide a neural basis behind the well-known, but mechanistically ill-defined, predisposition to obesity development.
Collapse
Affiliation(s)
- Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Joshua Otiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jessie C Morrill
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Zhengmei Mao
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Deng Y, Deng G, Grobe JL, Cui H. Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Front Physiol 2021; 12:691226. [PMID: 34262481 PMCID: PMC8274634 DOI: 10.3389/fphys.2021.691226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is commonly associated with sympathetic overdrive, which is one of the major risk factors for the development of cardiovascular diseases, such as hypertension and heart failure. Over the past few decades, there has been a growing understanding of molecular mechanisms underlying obesity development with central origin; however, the relative contribution of these molecular changes to the regulation of cardiovascular function remains vague. A variety of G-protein coupled receptors (GPCRs) and their downstream signaling pathways activated in distinct hypothalamic neurons by different metabolic hormones, neuropeptides and monoamine neurotransmitters are crucial not only for the regulation of appetite and metabolic homeostasis but also for the sympathetic control of cardiovascular function. In this review, we will highlight the main GPCRs and associated hypothalamic nuclei that are important for both metabolic homeostasis and cardiovascular function. The potential downstream molecular mediators of these GPCRs will also be discussed.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- FOE Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
3
|
Boccia L, Gamakharia S, Coester B, Whiting L, Lutz TA, Le Foll C. Amylin brain circuitry. Peptides 2020; 132:170366. [PMID: 32634450 DOI: 10.1016/j.peptides.2020.170366] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Amylin is a peptide hormone that is mainly known to be produced by pancreatic β-cells in response to a meal but amylin is also produced by brain cells in discrete brain areas albeit in a lesser amount. Amylin receptor (AMY) is composed of the calcitonin core-receptor (CTR) and one of the 3 receptor activity modifying protein (RAMP), thus forming AMY1-3; RAMP enhances amylin binding properties to the CTR. However, amylin receptor agonist such as salmon calcitonin is able to bind CTR alone. Peripheral amylin's main binding site is located in the area postrema (AP) which then propagate the signal to the nucleus of the solitary tract and lateral parabrachial nucleus (LPBN) and it is then transmitted to the forebrain areas such as central amygdala and bed nucleus of the stria terminalis. Amylin's activation of these different brain areas mediates eating and other metabolic pathways controlling energy expenditure and glucose homeostasis. Peripheral amylin can also bind in the arcuate nucleus of the hypothalamus where it acts independently of the AP to activate POMC and NPY neurons. Amylin activation of NPY neurons has been shown to be transmitted to LPBN neurons to act on eating while amylin POMC signaling affects energy expenditure and locomotor activity. While a large amount of experiments have already been conducted, future studies will have to further investigate how amylin is taken up by forebrain areas and deepen our understanding of amylin action on peripheral metabolism.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Salome Gamakharia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Bernd Coester
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Lynda Whiting
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
4
|
Wang H, Astarita G, Taussig MD, Bharadwaj KG, DiPatrizio NV, Nave KA, Piomelli D, Goldberg IJ, Eckel RH. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab 2011; 13:105-13. [PMID: 21195353 PMCID: PMC3034302 DOI: 10.1016/j.cmet.2010.12.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 08/24/2010] [Accepted: 11/04/2010] [Indexed: 01/30/2023]
Abstract
Free fatty acids (FFAs) suppress appetite when injected into the hypothalamus. To examine whether lipoprotein lipase (LPL), a serine hydrolase that releases FFAs from circulating triglyceride (TG)-rich lipoproteins, might contribute to FFA-mediated signaling in the brain, we created neuron-specific LPL-deficient mice. Homozygous mutant (NEXLPL-/-) mice were hyperphagic and became obese by 16 weeks of age. These traits were accompanied by elevations in the hypothalamic orexigenic neuropeptides, AgRP and NPY, and were followed by reductions in metabolic rate. The uptake of TG-rich lipoprotein fatty acids was reduced in the hypothalamus of 3-month-old NEXLPL-/- mice. Moreover, deficiencies in essential fatty acids in the hypothalamus were evident by 3 months, with major deficiencies of long-chain n-3 fatty acids by 12 months. These results indicate that TG-rich lipoproteins are sensed in the brain by an LPL-dependent mechanism and provide lipid signals for the central regulation of body weight and energy balance.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Giuseppe Astarita
- Department of Pharmacology, University of California Irvine, Irvine, California 92617, USA
| | - Matthew D. Taussig
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | - Nicholas V. DiPatrizio
- Department of Pharmacology, University of California Irvine, Irvine, California 92617, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Goettingen, Germany
| | - Daniele Piomelli
- Department of Pharmacology, University of California Irvine, Irvine, California 92617, USA
- Drug Discovery and Development, Italian Institute of Technology, Genoa, 16163, Italy
| | - Ira J. Goldberg
- Department of Medicine, Columbia University, New York City, New York 10032, USA
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
5
|
de Backer MWA, Brans MAD, Luijendijk MC, Garner KM, Adan RAH. Optimization of adeno-associated viral vector-mediated gene delivery to the hypothalamus. Hum Gene Ther 2010; 21:673-82. [PMID: 20073991 DOI: 10.1089/hum.2009.169] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To efficiently deliver genes and short hairpin RNAs to the hypothalamus we aimed to optimize the transduction efficiency of adeno-associated virus (AAV) in the rat hypothalamus. We compared the transduction efficiencies of AAV2 vectors pseudotyped with AAV1, AAV8, and mosaic AAV1/2 and AAV2/8 coats with that of an AAV2 coated vector after injection into the lateral hypothalamus of rats. In addition, we determined the transduction areas and the percentage of neurons infected after injection of various titers and volumes of two AAV1-pseudotyped vectors in the paraventricular hypothalamus (PVN). Successful gene delivery to the hypothalamus was achieved with AAV1-pseudotyped AAV vectors. The optimal approach to transduce an area, with the size of the PVN, was to inject 1 x 10(9) genomic copies of an AAV1-pseudotyped vector in a volume of 1 microl. At a radius of 0.05 mm from the injection site almost all neurons were transduced. In addition, overexpression of AgRP with the optimal approach resulted in an increase in food intake and body weight when compared with AAV-GFP.
Collapse
Affiliation(s)
- Marijke W A de Backer
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, Utrecht University Medical Center Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
Switonski M, Stachowiak M, Cieslak J, Bartz M, Grzes M. Genetics of fat tissue accumulation in pigs: a comparative approach. J Appl Genet 2010; 51:153-68. [DOI: 10.1007/bf03195724] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Kesterson RA, Berbari NF, Pasek RC, Yoder BK. Utilization of conditional alleles to study the role of the primary cilium in obesity. Methods Cell Biol 2009; 94:163-79. [PMID: 20362090 DOI: 10.1016/s0091-679x(08)94008-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ciliopathies are a group of human diseases that involve dysfunction of the cilium. Human patients with mutations in ciliary proteins can exhibit a wide range of phenotypes, one of which is obesity. This is seen in patients with Bardet-Biedl syndrome (BBS) and Alström syndrome (ALMS). Both of these disorders are caused by mutations in proteins that localize to the cilium or the basal body at the base of the cilium. These rare human disorders and their corresponding mouse models together with genetic approaches to disrupt cilia on specific cell types are beginning to uncover the connection between the cilium and energy homeostasis. Here we will review the current data on how cilia are thought to be involved in energy homeostatic pathways and discuss several key factors to consider when utilizing conditional approaches to evaluate ciliary function and their link to obesity.
Collapse
Affiliation(s)
- Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham Medical School, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|