1
|
Cong R, Qu X, Zhang H, Hu Y, Ye S, Cai D, Li X, Liu HY. Maternal high-protein diet modulates hepatic growth axis in weaning piglets by reprogramming the IGFBP-3 gene. Eur J Nutr 2019; 59:2497-2506. [PMID: 31570976 PMCID: PMC7413878 DOI: 10.1007/s00394-019-02097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/19/2019] [Indexed: 10/29/2022]
Abstract
PURPOSE The aim of this study was to investigate the effects of maternal high dietary protein intake on the hepatic growth axis in offspring. METHODS Fourteen primiparous purebred Meishan sows were fed either a standard-protein (SP, n = 7) diet or a high-protein (HP, 150% of SP, n = 7) diet during pregnancy. Offspring (one male and one female per group, n = 14) on day 70 of the embryonic stage and on days 1, 35 and 180 after birth were selected, weighed and killed. Serum samples were analyzed for Tch, insulin and insulin-like growth factor-binding protein 3 (IGFBP-3) levels. Liver samples were analyzed for IGFBP-3 and IGF-I mRNA expression by qRT-PCR and for IGFBP-3, IGF1R and growth hormone receptor (GHR) protein expression by Western blotting. The underlying mechanism of IGFBP-3 regulation was determined by methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). RESULTS High-protein exposure resulted in significantly higher body and liver weights of piglets, and it increased their serum T3 and T4 levels at birth and/or at weaning. Furthermore, the IGFBP-3 protein content in the liver and serum was significantly reduced in the HP-exposed weaning piglets, whereas at the transcriptional level IGFBP-3 mRNA expression was downregulated in the livers of HP group piglets. Finally, DNA hypermethylation and higher enrichment of the histone repressive marks H3K27me3 and H3K9me3 were observed. CONCLUSIONS Taken together, these results suggest that a maternal high-protein diet during gestation epigenetically reprograms IGFBP-3 gene expression to modulate the hepatic growth axis in weaning piglets.
Collapse
Affiliation(s)
- Rihua Cong
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China
| | - Yongling Hu
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China
| | - Silin Ye
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China
| | - Demin Cai
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, 95817, CA, USA. .,College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Xian Li
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shannxi, China.
| | - Hao-Yu Liu
- Department of Medical Cell Biology, Uppsala University, SE-75123, Uppsala, Sweden.
| |
Collapse
|
2
|
Barros MAV, De Brito Alves JL, Nogueira VO, Wanderley AG, Costa-Silva JH. Maternal low-protein diet induces changes in the cardiovascular autonomic modulation in male rat offspring. Nutr Metab Cardiovasc Dis 2015; 25:123-130. [PMID: 25287449 DOI: 10.1016/j.numecd.2014.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Maternal undernutrition induces development of the arterial hypertension. We investigated the effects of a maternal low-protein diet on cardiovascular autonomic control in the offspring. METHODS AND RESULTS Male Wistar rats were divided into two groups according to the diets of their mothers during gestation and lactation: the control (normal protein, NP, 17% casein; n = 14) and low-protein (LP, 8% casein; n = 14) groups. Direct measurements of arterial pressure (AP) were recorded from wakeful 90-day-old male offspring. The LP offspring presented higher mean AP than did the NP rats (NP: 93 ± 4 vs. LP: 113 ± 2 mmHg; p < 0.05), whereas the heart rate (HR) was similar in the two groups. In the spectral analysis, the LP group showed higher power at low (NP: 1.98 ± 0.25 vs. LP: 3.7 ± 0.3 mmHg²; p < 0.05) and high (NP: 1.28 ± 0.18 vs. LP: 2.13 ± 0.42 mmHg²; p < 0.05) frequencies of systolic arterial pressure (SAP). In the pulse interval, the LP group presented an increase in the LF/HF ratio (NP: 0.32 vs. LP: 0.56; p < 0.05). After propranolol (4 mg/kg, intravenous (iv)), the bradycardia was higher in the LP group (NP: -36 ± 8 vs. LP: -94 ± 12 bpm; p < 0.05), after methylatropine (2 mg/kg, iv), the tachycardia was similar to NP group. After administration of the ganglionic blocker (hexamethonium; 25 mg/kg, iv), the LP animals showed larger delta variation in the AP (NP: -33.7 ± 5 vs. LP: -53.6 ± 4 mmHg; p < 0.05). CONCLUSION The rats subjected to protein malnutrition presented an increase in the cardiovascular sympathetic tone, which contributed to the elevated AP observed in these animals.
Collapse
Affiliation(s)
- M A V Barros
- Department of Physical Education and Sport Sciences, Academic Center of Vitoria (CAV), Federal University of Pernambuco, 55608-680, Brazil
| | - J L De Brito Alves
- Department of Physical Education and Sport Sciences, Academic Center of Vitoria (CAV), Federal University of Pernambuco, 55608-680, Brazil
| | - V O Nogueira
- Department of Physical Education and Sport Sciences, Academic Center of Vitoria (CAV), Federal University of Pernambuco, 55608-680, Brazil
| | - A G Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Brazil
| | - J H Costa-Silva
- Department of Physical Education and Sport Sciences, Academic Center of Vitoria (CAV), Federal University of Pernambuco, 55608-680, Brazil.
| |
Collapse
|
3
|
Rees WD, Hay SM. Lipocalin-2 (Lcn2) expression is mediated by maternal nutrition during the development of the fetal liver. GENES AND NUTRITION 2014; 9:380. [PMID: 24382649 DOI: 10.1007/s12263-013-0380-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/07/2013] [Indexed: 11/26/2022]
Abstract
The mechanisms by which maternal protein deficiency programs insulin action in the offspring are poorly understood. The interpretation of transcriptomics is complicated by homeostatic adaptations, for example, changes in amino acid metabolism, which are potentially unrelated to the programming mechanism. The fatty acid composition of the maternal diet modulates the programming of insulin action, offering a possible strategy to circumvent these complications. Fetal livers harvested on d21 of gestation from pregnant rats fed high-protein (18 % w/w) and low-protein (9 % w/w) diets prepared with either corn or soya oil were screened with rat genome microarrays. Although a low-protein maternal diet altered the abundance of more than one hundred mRNAs in the fetal liver, only 40 were changed by the fatty acid composition of the diet (P < 0.05). One of these mRNAs was identified as lipocalin-2 (Lcn2). This pattern of differential expression was confirmed by qRT-PCR. The expression of Lcn2 was decreased by low-protein diets when the diet contained soya oil, whereas the effect of protein was much smaller in the group fed diets prepared with corn oil. The decrease in Lcn2 expression produced by soya oil persisted into adult life. Levels of the Lcn2 protein were closely correlated to the mRNA abundance. The results suggest a possible involvement of Lcn2 in the programming of hepatic function.
Collapse
Affiliation(s)
- William D Rees
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, Scotland, UK,
| | | |
Collapse
|
4
|
Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. High- and low-protein gestation diets do not provoke common transcriptional responses representing universal target-pathways in muscle and liver of porcine progeny. Acta Physiol (Oxf) 2014; 210:202-14. [PMID: 24188291 DOI: 10.1111/apha.12192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/02/2013] [Accepted: 10/30/2013] [Indexed: 12/27/2022]
Abstract
AIM Maternal diets introduce transcriptional changes in the offspring, highlighting the concept of genetic and physiological plasticity. Our previous analyses investigated stage-dependent transcriptional responses to either maternal high or low protein/carbohydrate ratios in either muscle or liver. Foetal programming is proposed to be mediated by a small number of gatekeeper processes, such as cytoskeleton remodelling and cell-cycle regulation. Here, we conducted an overall analysis of a three-dimensional data set aiming to elucidate, whether there are universally targeted pathways of adaptive transcriptional response to different protein/carbohydrate ratios. METHODS Microarray analyses were performed on liver and skeletal muscle tissue sampled at 94 days post-conception and 1, 28 and 188 days post-natum from offspring (n = 253) of German Landrace gilts that were fed isoenergetic diets containing low, high or adequate protein. RESULTS Cluster analyses revealed a hierarchical influence of tissue, ontogenetic stage and diet on transcript levels. Considering results cumulatively over stages, liver showed only marginal transcriptional differences between the dietary groups, whereas considerable differences appeared in muscle. Considering results cumulatively over tissues, nutrition-responsive transcriptions were observed along ontogenesis. Pathway analyses revealed transcript differences in genes related to tissue remodelling, cell-cycle regulation and mitochondrial function. CONCLUSION The factors tissue, stage and diet impact gene expression in a hierarchical order. Porcine liver appeared to be a tissue that was more resilient to nutritional modulation compared with skeletal muscle tissue. Differential modulation between tissues and dietary groups reveal that there are no universal target-pathways of adaptive transcriptional response to different protein diets.
Collapse
Affiliation(s)
- M. Oster
- Institute for Genome Biology; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| | - E. Murani
- Institute for Genome Biology; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| | - C. C. Metges
- Institute for Nutritional Physiology; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| | - S. Ponsuksili
- Research Group Functional Genomics; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| | - K. Wimmers
- Institute for Genome Biology; Leibniz Institute for Farm Animal Biology; Dummerstorf Germany
| |
Collapse
|
5
|
Short- and long-term effects of a maternal low-protein diet on ventilation, O₂/CO₂ chemoreception and arterial blood pressure in male rat offspring. Br J Nutr 2013; 111:606-15. [PMID: 24059468 DOI: 10.1017/s0007114513002833] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maternal undernutrition increases the risk of adult arterial hypertension. The present study investigated the short- and long-term effects of a maternal low-protein diet on respiratory rhythm, O₂/CO₂ chemosensitivity and arterial blood pressure (ABP) of the offspring. Male Wistar rats were divided into two groups according to their mothers' diets during gestation and lactation: control (NP, 17% of casein) and low-protein (LP, 8% of casein) groups. Direct measurements of ABP, respiratory frequency (RF), tidal volume (V T) and ventilation (VE), as well as hypercapnia (7% CO₂) and hypoxia (7% O₂) evoked respiratory responses were recorded from the awake male offspring at the 30th and 90th days of life. Blood samples were collected for the analyses of protein, creatinine and urea concentrations. The LP offspring had impaired body weight and length throughout the experiment. At 30 d of age, the LP rats showed a reduction in the concentrations of total serum protein (approximately 24%). ABP in the LP rats was similar to that in the NP rats at 30 d of age, but it was 20% higher at 90 d of age. With respect to ventilatory parameters, the LP rats showed enhanced RF (approximately 34%) and VE (approximately 34%) at 30 d of age, which was associated with increased ventilatory responses to hypercapnia (approximately 21% in VE) and hypoxia (approximately 82% in VE). At 90 d of age, the VE values and CO₂/O₂ chemosensitivity of the LP rats were restored to the control range, but the RF values remained elevated. The present data show that a perinatal LP diet alters respiratory rhythm and O₂/CO₂ chemosensitivity at early ages, which may be a predisposing factor for increased ABP at adulthood.
Collapse
|
6
|
Döring F, Lüersen K, Schmelzer C, Hennig S, Lang IS, Görs S, Rehfeldt C, Otten W, Metges CC. Influence of maternal low protein diet during pregnancy on hepatic gene expression signature in juvenile female porcine offspring. Mol Nutr Food Res 2012. [PMID: 23197441 DOI: 10.1002/mnfr.201200315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SCOPE Epidemiological and experimental evidence indicates that maternal nutrition status contributes to long-term changes in the metabolic phenotype of the offspring, a process known as fetal programming. METHODS AND RESULTS We have used a swine model (Sus scrofa) to analyze consequences of a maternal low protein diet (about 50% of control) during pregnancy on hepatic lipid metabolism and genome-wide hepatic gene expression profile of juvenile female offspring (mean age 85 days). We found 318 S. scrofa genes to be differentially expressed in the liver at age 85 days. In the low protein offspring group key genes of fatty acid de novo synthesis were downregulated whereas several genes of lipolysis and phospholipid biosynthesis were upregulated. qRT-PCR analysis of selected genes verified microarray data and revealed linear correlations between gene expression levels and slaughter weight. Hepatic cholesterol 7α hydroxylase protein expression tended to be lower in the low protein group. Total lipid and triglyceride content and fatty acid composition of total lipids were not different between groups. CONCLUSION A maternal low protein diet during pregnancy induces a distinct hepatic gene expression signature in juvenile female pigs which was not translated into phenotypical changes of liver lipid metabolism.
Collapse
Affiliation(s)
- Frank Döring
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Methionine and folate are the key components of one carbon metabolism, providing the methyl groups for numerous methyl transferase reactions via the ubiquitous methyl donor, s-adenosyl methionine. Methionine metabolism is responsive to nutrient intake, is regulated by several hormones and requires a number of vitamins (B12, pyridoxine, riboflavin) as co-factors. The critical relationship between perturbations in the mother's methionine metabolism and its impact on fetal growth and development is now becoming evident. The relation of folate intake to fetal teratogenesis has been known for some time. Studies in human pregnancy show a continuous decrease in plasma homocysteine, and an increase in plasma choline concentrations with advancing gestation. A higher rate of transsulfuration of methionine in early gestation and of transmethylation in the 3rd trimester was seen in healthy pregnant women. How these processes are impacted by nutritional, hormonal and other influences in human pregnancy and their effect on fetal growth has not been examined. Isocaloric protein restriction in pregnant rats, resulted in fetal growth restriction and metabolic reprogramming. Isocaloric protein restriction in the non-pregnant rat, resulted in differential expression of a number of genes in the liver, a 50% increase in whole body serine biosynthesis and high rate of transmethylation, suggesting high methylation demands. These responses were associated with a significant decrease in intracellular taurine levels in the liver suggesting a role of cellular osmolarity in the observed metabolic responses. These unique changes in methionine and one carbon metabolism in response to physiological, nutritional and hormonal influences make these processes critical for cellular and organ function and growth.
Collapse
Affiliation(s)
- Satish C Kalhan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
8
|
Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. A low protein diet during pregnancy provokes a lasting shift of hepatic expression of genes related to cell cycle throughout ontogenesis in a porcine model. BMC Genomics 2012; 13:93. [PMID: 22424151 PMCID: PMC3342123 DOI: 10.1186/1471-2164-13-93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 03/16/2012] [Indexed: 12/23/2022] Open
Abstract
Background In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. Adverse environmental conditions during fetal development provoke an intrauterine adaptive response termed 'fetal programming', which may lead to both persistently biased responsiveness to extrinsic factors and permanent consequences for the organismal phenotype. This leads to the hypothesis that the offspring's transcriptome exhibits short-term and long-term changes, depending on the maternal diet. In order to contribute to a comprehensive inventory of genes and functional networks that are targets of nutritional programming initiated during fetal life, we applied whole-genome microarrays for expression profiling in a longitudinal experimental design covering prenatal, perinatal, juvenile, and adult ontogenetic stages in a porcine model. Pregnant sows were fed either a gestational low protein diet (LP, 6% CP) or an adequate protein diet (AP, 12% CP). All offspring was nursed by foster sows receiving standard diets. After weaning, all offspring was fed standard diets ad libitum. Results Analyses of the hepatic gene expression of the offspring at prenatal (94 dies post conceptionem, dpc) and postnatal stages (1, 28, 188 dies post natum, dpn) included comparisons between dietary groups within stages as well as comparisons between ontogenetic stages within diets to separate diet-specific transcriptional changes and maturation processes. We observed differential expression of genes related to lipid metabolism (e.g. Fatty acid metabolism, Biosynthesis of steroids, Synthesis and degradation of ketone bodies, FA elongation in mitochondria, Bile acid synthesis) and cell cycle regulation (e.g. Mitotic roles of PLK, G1/S checkpoint regulation, G2/M DNA damage checkpoint regulation). Notably, at stage 1 dpn no regulation of a distinct pathway was found in LP offspring. Conclusions The transcriptomic modulations point to persistent functional demand on the liver towards cell proliferation in the LP group but not in the AP group at identical nutritional conditions during postnatal life due to divergent 'programming' of the genome. Together with the observation that the offspring of both groups did not differ in body weight but in body composition and fat content, the data indicate that the activity of various genes led to diverse partitioning of nutrients among peripheral and visceral organs and tissues.
Collapse
Affiliation(s)
- Michael Oster
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
9
|
Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model. PLoS One 2011; 6:e21691. [PMID: 21789176 PMCID: PMC3138750 DOI: 10.1371/journal.pone.0021691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/26/2011] [Indexed: 12/30/2022] Open
Abstract
In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP) or an adequate protein diet (AP, 12% CP) throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc) and postnatal stages (1, 28, 188 dpn). Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages.
Collapse
Affiliation(s)
- Michael Oster
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C. Metges
- Research Unit Physiology of Nutrition, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Group Functional Genomics, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- * E-mail:
| |
Collapse
|
10
|
Hepatic expression of the GH/JAK/STAT/IGF pathway, acute-phase response signalling and complement system are affected in mouse offspring by prenatal and early postnatal exposure to maternal high-protein diet. Eur J Nutr 2011; 50:611-23. [DOI: 10.1007/s00394-011-0168-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/10/2011] [Indexed: 12/20/2022]
|
11
|
Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat. Br J Nutr 2009; 102:1445-52. [PMID: 19566968 DOI: 10.1017/s0007114509990389] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previously we have examined the effects of diets deficient in folic acid ( - F) or folate deficient with low methionine and choline ( - F LM LC) on the relative abundance of soluble proteins in the liver of the pregnant rat. In the present study we report the corresponding changes in the fetal liver at day 21 of gestation. The abundance of eighteen proteins increased when dams were fed the - F diet. When dams were fed the - F LM LC diet, thirty-three proteins increased and eight decreased. Many of the differentially abundant proteins in the fetal liver could be classified into the same functional groups as those previously identified in the maternal liver, namely protein synthesis, metabolism, lipid metabolism and proteins associated with the cytoskeleton and endoplasmic reticulum. The pattern was consistent with reduced cell proliferation in the - F LM LC group but not in the - F group. Metabolic enzymes associated with lipid metabolism changed in both the - F and - F LM LC groups. The mRNA for carnitine palmitoyl transferase were up-regulated and CD36 (fatty acid translocase) down-regulated in the - F group, suggesting increased mitochondrial oxidation of fatty acids as an indirect response to altered maternal lipid metabolism. In the - F LM LC group the mRNA for acetyl CoA carboxylase was down-regulated, suggesting reduced fatty acid synthesis. The mRNA for transcriptional regulators including PPARalpha and sterol response element-binding protein-1c were unchanged. These results suggest that an adequate supply of folic acid and the related methyl donors may benefit fetal development directly by improving lipid metabolism in fetal as well as maternal tissues.
Collapse
|