1
|
Dolgin V, Chabosseau P, Bistritzer J, Noyman I, Staretz‐Chacham O, Wormser O, Hadar N, Eskin‐Schwartz M, Kanengisser‐Pines B, Narkis G, Abramsky R, Shany E, Rutter GA, Marks K, Birk OS. Severe neonatal hypotonia due to SLC30A5 variant affecting function of ZnT5 zinc transporter. JIMD Rep 2025; 66:e12465. [PMID: 39790720 PMCID: PMC11712426 DOI: 10.1002/jmd2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
The tightly-regulated spatial and temporal distribution of zinc ion concentrations within cellular compartments is controlled by two groups of Zn2+ transporters: the 14-member ZIP/SLC39 family, facilitating Zn2+ influx into the cytoplasm from the extracellular space or intracellular organelles; and the 10-member ZnT/SLC30 family, mobilizing Zn2+ in the opposite direction. Genetic aberrations in most zinc transporters cause human syndromes. Notably, previous studies demonstrated osteopenia and male-specific cardiac death in mice lacking the ZnT5/SLC30A5 zinc transporter, and suggested association of two homozygous frameshift SLC30A5 variants with perinatal mortality in humans, due to hydrops fetalis and hypertrophic cardiomyopathy. We set out to decipher the molecular basis of a severe hypotonia syndrome. Combining homozygosity mapping and exome sequencing studies of consanguineous Bedouin kindred, as well as transfection experiments and zinc monitoring in HEK293 cells, we demonstrate that a bi-allelic in-frame 3bp deletion variant in SLC30A5, deleting isoleucine within the highly conserved cation efflux domain of the encoded ZnT5, results in lower cytosolic zinc concentrations, causing a syndrome of severe non-progressive neonatal axial and limb hypotonia with high-arched palate and respiratory failure. There was no evidence of hydrops fetalis, cardiomyopathy or multi-organ involvement. Affected infants required nasogastric tube or gastrostomy feeding, suffered from various degrees of respiratory compromise and failure to thrive and died in infancy. Thus, a biallelic variant in SLC30A5 (ZnT5), affecting cytosolic zinc concentrations, causes a severe hypotonia syndrome with respiratory insufficiency and failure to thrive, lethal by 1 year of age.
Collapse
Affiliation(s)
- Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
| | | | - Jacob Bistritzer
- Pediatric Neurology Unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Iris Noyman
- Pediatric Neurology Unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Orna Staretz‐Chacham
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
- Metabolic Clinic, Division of Pediatrics, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
| | - Noam Hadar
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
| | - Marina Eskin‐Schwartz
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
| | | | - Ginat Narkis
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
| | - Ramy Abramsky
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
| | - Eilon Shany
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Guy A. Rutter
- CRCHUM and Department of MedicineUniversité de MontréalMontréalQCCanada
- Department of Diabetes, Endocrinology and Medicine, Faculty of MedicineImperial CollegeLondonUK
- LKC School of MedicineNanyang Technological CollegeSingaporeSingapore
| | - Kyla Marks
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Ohad S. Birk
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
- The Danek Gertner Institute of Human GeneticsSheba Medical CenterTel‐HashomerRamat GanIsrael
| |
Collapse
|
2
|
Zhang L, Zhang S, Yuan M, Zhan F, Song M, Shang P, Yang F, Li X, Qiao R, Han X, Li X, Fang M, Wang K. Genome-Wide Association Studies and Runs of Homozygosity to Identify Reproduction-Related Genes in Yorkshire Pig Population. Genes (Basel) 2023; 14:2133. [PMID: 38136955 PMCID: PMC10742578 DOI: 10.3390/genes14122133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Reproductive traits hold considerable economic importance in pig breeding and production. However, candidate genes underpinning the reproductive traits are still poorly identified. In the present study, we executed a genome-wide association study (GWAS) and runs of homozygosity (ROH) analysis using the PorcineSNP50 BeadChip array for 585 Yorkshire pigs. Results from the GWAS identified two genome-wide significant and eighteen suggestive significant single nucleotide polymorphisms (SNPs) associated with seven reproductive traits. Furthermore, we identified candidate genes, including ELMO1, AOAH, INSIG2, NUP205, LYPLAL1, RPL34, LIPH, RNF7, GRK7, ETV5, FYN, and SLC30A5, which were chosen due to adjoining significant SNPs and their functions in immunity, fertilization, embryonic development, and sperm quality. Several genes were found in ROH islands associated with spermatozoa, development of the fetus, mature eggs, and litter size, including INSL6, TAF4B, E2F7, RTL1, CDKN1C, and GDF9. This study will provide insight into the genetic basis for pig reproductive traits, facilitating reproduction improvement using the marker-based selection methods.
Collapse
Affiliation(s)
- Lige Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Songyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Meng Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Fengting Zhan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Mingkun Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China;
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| |
Collapse
|
3
|
Azimi Z, Isa MR, Khan J, Wang SM, Ismail Z. Association of zinc level with DNA methylation and its consequences: A systematic review. Heliyon 2022; 8:e10815. [PMID: 36203899 PMCID: PMC9530842 DOI: 10.1016/j.heliyon.2022.e10815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Objectives Method Results Conclusion
Collapse
Affiliation(s)
- Ziauddin Azimi
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Department of Biochemistry, Faculty of Pharmacy, Kabul University, Jamal Mina, Kabul, Afghanistan
| | - Mohamad Rodi Isa
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
| | - Jesmine Khan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
| | - Seok Mui Wang
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Center, Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Zaliha Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Corresponding author.
| |
Collapse
|
4
|
Zinc Signaling in the Mammary Gland: For Better and for Worse. Biomedicines 2021; 9:biomedicines9091204. [PMID: 34572390 PMCID: PMC8469023 DOI: 10.3390/biomedicines9091204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.
Collapse
|
5
|
Lieberwirth JK, Joset P, Heinze A, Hentschel J, Stein A, Iannaccone A, Steindl K, Kuechler A, Abou Jamra R. Bi-allelic loss of function variants in SLC30A5 as cause of perinatal lethal cardiomyopathy. Eur J Hum Genet 2021; 29:808-815. [PMID: 33547425 PMCID: PMC8110774 DOI: 10.1038/s41431-020-00803-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Perinatal mortality is a heavy burden for both affected parents and physicians. However, the underlying genetic causes have not been sufficiently investigated and most cases remain without diagnosis. This impedes appropriate counseling or therapy. We describe four affected children of two unrelated families with cardiomyopathy, hydrops fetalis, or cystic hygroma that all deceased perinatally. In the four patients, we found the following homozygous loss of function (LoF) variants in SLC30A5 NM_022902.4:c.832_836del p.(Ile278Phefs*33) and NM_022902.4:c.1981_1982del p.(His661Tyrfs*10). Knockout of SLC30A5 has previously been shown a cardiac phenotype in mouse models and no homozygous LoF variants in SLC30A5 are currently described in gnomAD. Taken together, we present SLC30A5 as a new gene for a severe and perinatally lethal form of cardiomyopathy.
Collapse
Affiliation(s)
- Johann Kaspar Lieberwirth
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Pascal Joset
- grid.7400.30000 0004 1937 0650Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Anja Heinze
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Julia Hentschel
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Anja Stein
- grid.5718.b0000 0001 2187 5445Department of Pediatrics I, Division of Neonatology, University Medical Center Essen, University Duisburg—Essen, Essen, Germany
| | - Antonella Iannaccone
- grid.5718.b0000 0001 2187 5445Department of Gynecology and Obstetrics, University Medical Center Essen, University Duisburg—Essen, Essen, Germany
| | - Katharina Steindl
- grid.7400.30000 0004 1937 0650Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Alma Kuechler
- grid.5718.b0000 0001 2187 5445Institute of Human Genetics, University Medical Center Essen, University of Duisburg—Essen, Essen, Germany
| | - Rami Abou Jamra
- grid.411339.d0000 0000 8517 9062Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Bird AJ, Wilson S. Zinc homeostasis in the secretory pathway in yeast. Curr Opin Chem Biol 2020; 55:145-150. [PMID: 32114317 DOI: 10.1016/j.cbpa.2020.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/14/2019] [Accepted: 01/26/2020] [Indexed: 01/20/2023]
Abstract
It is estimated that up to 10% of proteins in eukaryotes require zinc for their function. Although the majority of these proteins are located in the nucleus and cytosol, a small subset is secreted from cells or is located within an intracellular compartment. As many of these compartmentalized metalloproteins fold to their native state and bind their zinc cofactor inside an organelle, cells require mechanisms to maintain supply of zinc to these compartments even under conditions of zinc deficiency. At the same time, intracellular compartments can also be the site for storing zinc ions, which then can be mobilized when needed. In this review, we highlight insight that has been obtained from yeast models about how zinc homeostasis is maintained in the secretory pathway and vacuole.
Collapse
Affiliation(s)
- Amanda J Bird
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Stevin Wilson
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
7
|
Brommage R, Powell DR, Vogel P. Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis Model Mech 2019; 12:dmm038224. [PMID: 31064765 PMCID: PMC6550044 DOI: 10.1242/dmm.038224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two large-scale mouse gene knockout phenotyping campaigns have provided extensive data on the functions of thousands of mammalian genes. The ongoing International Mouse Phenotyping Consortium (IMPC), with the goal of examining all ∼20,000 mouse genes, has examined 5115 genes since 2011, and phenotypic data from several analyses are available on the IMPC website (www.mousephenotype.org). Mutant mice having at least one human genetic disease-associated phenotype are available for 185 IMPC genes. Lexicon Pharmaceuticals' Genome5000™ campaign performed similar analyses between 2000 and the end of 2008 focusing on the druggable genome, including enzymes, receptors, transporters, channels and secreted proteins. Mutants (4654 genes, with 3762 viable adult homozygous lines) with therapeutically interesting phenotypes were studied extensively. Importantly, phenotypes for 29 Lexicon mouse gene knockouts were published prior to observations of similar phenotypes resulting from homologous mutations in human genetic disorders. Knockout mouse phenotypes for an additional 30 genes mimicked previously published human genetic disorders. Several of these models have helped develop effective treatments for human diseases. For example, studying Tph1 knockout mice (lacking peripheral serotonin) aided the development of telotristat ethyl, an approved treatment for carcinoid syndrome. Sglt1 (also known as Slc5a1) and Sglt2 (also known as Slc5a2) knockout mice were employed to develop sotagliflozin, a dual SGLT1/SGLT2 inhibitor having success in clinical trials for diabetes. Clinical trials evaluating inhibitors of AAK1 (neuropathic pain) and SGLT1 (diabetes) are underway. The research community can take advantage of these unbiased analyses of gene function in mice, including the minimally studied 'ignorome' genes.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - David R Powell
- Department of Metabolism Research, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381, USA
| | - Peter Vogel
- St. Jude Children's Research Hospital, Pathology, MS 250, Room C5036A, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
8
|
In silico mapping of quantitative trait loci (QTL) regulating the milk ionome in mice identifies a milk iron locus on chromosome 1. Mamm Genome 2018; 29:632-655. [DOI: 10.1007/s00335-018-9762-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 01/06/2023]
|
9
|
Golan Y, Kambe T, Assaraf YG. The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency. Metallomics 2018; 9:1352-1366. [PMID: 28665435 DOI: 10.1039/c7mt00162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Breast milk is the optimal nutrient mix for infants until the age of 6 months. However, in some cases, due to genetic alterations as well as nutrient deficiencies in nursing mothers, infants may suffer from inadequate levels of micronutrients upon exclusive breastfeeding. In this respect, transient neonatal zinc deficiency (TNZD) is caused by loss-of-function mutations in the zinc transporter SLC30A2/ZnT2 gene, resulting in poor secretion of zinc into the breast milk. Consequently, infants exclusively breastfed with zinc-deficient breast milk develop severe zinc deficiency. The main initial symptoms of zinc deficiency are dermatitis, diarrhea, alopecia, and loss of appetite. Importantly, zinc supplementation of these zinc-deficient infants effectively and rapidly resolves these TNZD symptoms. In the current review, we present the major steps towards the identification of the molecular mechanisms underlying TNZD and propose novel approaches that could be implemented in order to achieve an early diagnosis of TNZD towards the prevention of TNZD morbidity. We also discuss the importance of assessing the prevalence of TNZD in the general population, while taking into consideration its autosomal dominant inheritance that was recently established, also supported by a large number of SLC30A2/ZnT2 variants recently identified in American lactating mothers. These findings indicating that TNZD is more frequent than initially thought, along with the increasing number of TNZD cases that were recently reported worldwide, prompted us here to highlight the importance of early diagnosis of SLC30A2/ZnT2 variants in order to supplement zinc-deficient infants in real-time, thus preventing TNZD morbidity and enhancing newborn health. This early genetic diagnosis of zinc deficiency could possibly prove to be a useful platform for the identification of other micronutrient deficiencies, which could be readily resolved by proper real-time supplementation of the infant's diet.
Collapse
Affiliation(s)
- Yarden Golan
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | | | | |
Collapse
|
10
|
Kambe T, Matsunaga M, Takeda TA. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway. Int J Mol Sci 2017; 18:ijms18102179. [PMID: 29048339 PMCID: PMC5666860 DOI: 10.3390/ijms18102179] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 01/07/2023] Open
Abstract
More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Mayu Matsunaga
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Ackland ML, Michalczyk AA. Zinc and infant nutrition. Arch Biochem Biophys 2016; 611:51-57. [PMID: 27317042 DOI: 10.1016/j.abb.2016.06.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Abstract
Zinc is essential for a wide variety of cellular processes in all cells. It is a critical dietary nutrient, particularly in the early stages of life. In the early neonatal period, adequate sources of zinc can be obtained from breast milk. In rare circumstances, the mammary gland produces zinc deficient milk that is potentially lethal for exclusively breast-fed infants. This can be overcome by zinc supplementation to the infant. Alterations to key zinc transporters provide insights into the mechanisms of cellular zinc homeostasis. The bioavailability of zinc in food depends on the presence of constituents that may complex zinc. In many countries, zinc deficiency is a major health issue due to poor nourishment. Young children are particularly affected. Zinc deficiency can impair immune function and contributes to the global burden of infectious diseases including diarrhoea, pneumonia and malaria. Furthermore, zinc deficiency may extend its influence across generations by inducing epigenetic effects that alter the expression of genes. This review discusses the significance of adequate zinc nutrition in infants, factors that influence zinc nutrition, the consequences of zinc deficiency, including its contribution to the global burden of disease, and addresses some of the knowledge gaps in zinc biology.
Collapse
Affiliation(s)
- M Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Agnes A Michalczyk
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
12
|
Kimura T, Kambe T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int J Mol Sci 2016; 17:336. [PMID: 26959009 PMCID: PMC4813198 DOI: 10.3390/ijms17030336] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
13
|
Chandler P, Kochupurakkal BS, Alam S, Richardson AL, Soybel DI, Kelleher SL. Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer. Mol Cancer 2016; 15:2. [PMID: 26728511 PMCID: PMC4700748 DOI: 10.1186/s12943-015-0486-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zinc (Zn) hyper-accumulates in breast tumors and malignant cell lines compared to normal mammary epithelium. The mechanisms responsible for Zn accumulation and the consequence of Zn dysregulation are poorly understood. METHODS Microarrays were performed to assess differences in the expression of Zn transporters and metallothioneins (MTs) in human breast tumors and breast cancer cell lines. Real-time PCR and immunoblotting were employed to profile Zn transporter expression in representative luminal (T47D), basal (MDA-MB-231), and non-malignant (MCF10A) cell lines. Zn distribution in human tumors was assessed by X-ray fluorescence imaging. Zn distribution and content in cell lines was measured using FluoZin-3 imaging, and quantification and atomic absorption spectroscopy. Functional consequences of ZnT2 over-expression in MDA-MB-231 cells including invasion, proliferation, and cell cycle were measured using Boyden chambers, MTT assays, and flow cytometry, respectively. RESULTS Gene expression profiling of human breast tumors and breast cancer cell lines identified subtype-specific dysregulation in the Zn transporting network. X-ray fluorescence imaging of breast tumor tissues revealed Zn hyper-accumulation at the margins of Luminal breast tumors while Zn was more evenly distributed within Basal tumors. While both T47D and MDA-MB-231 cells hyper-accumulated Zn relative to MCF10A cells, T47D cells accumulated 2.5-fold more Zn compared to MDA-MB-231 cells. FluoZin-3 imaging indicated that Zn was sequestered into numerous large vesicles in T47D cells, but was retained in the cytoplasm and found in fewer and larger, amorphous sub-cellular compartments in MDA-MB-231 cells. The differences in Zn localization mirrored the relative abundance of the Zn transporter ZnT2; T47D cells over-expressed ZnT2, whereas MDA-MB-231 cells did not express ZnT2 protein due to proteasomal degradation. To determine the functional relevance of the lack of ZnT2 in MDA-MB-231cells, cells were transfected to express ZnT2. ZnT2 over-expression led to Zn vesicularization, shifts in cell cycle, enhanced apoptosis, and reduced proliferation and invasion. CONCLUSIONS This comprehensive analysis of the Zn transporting network in malignant breast tumors and cell lines illustrates that distinct subtype-specific dysregulation of Zn management may underlie phenotypic characteristics of breast cancers such as grade, invasiveness, metastatic potential, and response to therapy.
Collapse
Affiliation(s)
- Paige Chandler
- The Interdisciplinary Graduate Program in Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
| | - Bose S Kochupurakkal
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Samina Alam
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
- The Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
| | - Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David I Soybel
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
- The Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA
| | - Shannon L Kelleher
- The Interdisciplinary Graduate Program in Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
- The Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
- The Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
- The Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
14
|
Terrin G, Berni Canani R, Di Chiara M, Pietravalle A, Aleandri V, Conte F, De Curtis M. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate. Nutrients 2015; 7:10427-46. [PMID: 26690476 PMCID: PMC4690094 DOI: 10.3390/nu7125542] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022] Open
Abstract
Zinc is a key element for growth and development. In this narrative review, we focus on the role of dietary zinc in early life (including embryo, fetus and preterm neonate), analyzing consequences of zinc deficiency and adequacy of current recommendations on dietary zinc. We performed a systematic search of articles on the role of zinc in early life. We selected and analyzed 81 studies. Results of this analysis showed that preservation of zinc balance is of critical importance for the avoidance of possible consequences of low zinc levels on pre- and post-natal life. Insufficient quantities of zinc during embryogenesis may influence the final phenotype of all organs. Maternal zinc restriction during pregnancy influences fetal growth, while adequate zinc supplementation during pregnancy may result in a reduction of the risk of preterm birth. Preterm neonates are at particular risk to develop zinc deficiency due to a combination of different factors: (i) low body stores due to reduced time for placental transfer of zinc; (ii) increased endogenous losses; and (iii) marginal intake. Early diagnosis of zinc deficiency, through the measurement of serum zinc concentrations, may be essential to avoid severe prenatal and postnatal consequences in these patients. Typical clinical manifestations of zinc deficiency are growth impairment and dermatitis. Increasing data suggest that moderate zinc deficiency may have significant subclinical effects, increasing the risk of several complications typical of preterm neonates (i.e., necrotizing enterocolitis, chronic lung disease, and retinopathy), and that current recommended intakes should be revised to meet zinc requirements of extremely preterm neonates. Future studies evaluating the adequacy of current recommendations are advocated.
Collapse
Affiliation(s)
- Gianluca Terrin
- Department of Gynecology-Obstetrics, University of Rome La Sapienza, Rome 00186, Italy.
| | - Roberto Berni Canani
- Department of Translational Medicine, University of Naples Federico II, Napoli 80138, Italy.
| | - Maria Di Chiara
- Department of Gynecology-Obstetrics, University of Rome La Sapienza, Rome 00186, Italy.
| | - Andrea Pietravalle
- Department of Gynecology-Obstetrics, University of Rome La Sapienza, Rome 00186, Italy.
| | - Vincenzo Aleandri
- Department of Gynecology-Obstetrics, University of Rome La Sapienza, Rome 00186, Italy.
- Research Center on Evaluation of Quality in Medicine-CEQUAM, University of Rome La Sapienza, Rome 00186, Italy.
| | - Francesca Conte
- Department of Pediatrics, University of Rome La Sapienza, Rome 00186, Italy.
| | - Mario De Curtis
- Department of Pediatrics, University of Rome La Sapienza, Rome 00186, Italy.
| |
Collapse
|