1
|
Pourzand P, Tabasi F, Fayazbakhsh F, Sarhadi S, Bahari G, Mohammadi M, Jomepour S, Nafeli M, Mosayebi F, Heravi M, Taheri M, Hashemi M, Ghavami S. The Reticulon-4 3-bp Deletion/Insertion Polymorphism Is Associated with Structural mRNA Changes and the Risk of Breast Cancer: A Population-Based Case-Control Study with Bioinformatics Analysis. Life (Basel) 2023; 13:1549. [PMID: 37511924 PMCID: PMC10381770 DOI: 10.3390/life13071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer (BC) is a complex disease caused by molecular events that disrupt cellular survival and death. Discovering novel biomarkers is still required to better understand and treat BC. The reticulon-4 (RTN4) gene, encoding Nogo proteins, plays a critical role in apoptosis and cancer development, with genetic variations affecting its function. We investigated the rs34917480 in RTN4 and its association with BC risk in an Iranian population sample. We also predicted the rs34917480 effect on RTN4 mRNA structure and explored the RTN4's protein-protein interaction network (PPIN) and related pathways. In this case-control study, 437 women (212 BC and 225 healthy) were recruited. The rs34917480 was genotyped using AS-PCR, mRNA secondary structure was predicted with RNAfold, and PPIN was constructed using the STRING database. Our findings revealed that this variant was associated with a decreased risk of BC in heterozygous (p = 0.012), dominant (p = 0.015), over-dominant (p = 0.017), and allelic (p = 0.035) models. Our prediction model showed that this variant could modify RTN4's mRNA thermodynamics and potentially its translation. RTN4's PPIN also revealed a strong association with apoptosis regulation and key signaling pathways highly implicated in BC. Consequently, our findings, for the first time, demonstrate that rs34917480 could be a protective factor against BC in our cohort, probably via preceding mechanisms.
Collapse
Affiliation(s)
- Pouria Pourzand
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Farhad Tabasi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Fariba Fayazbakhsh
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Shamim Sarhadi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohsen Mohammadi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Sahar Jomepour
- Department of Cardiology, Cardiovascular Research Center, School of Medicine, Hormozgan University of Medical Science, Bandar Abbas 7916613885, Iran
| | - Mohammad Nafeli
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Fatemeh Mosayebi
- Tehran Heart Center, Tehran University of Medical Science, Tehran 1416634793, Iran
| | - Mehrdad Heravi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
2
|
Ai C, Zhou Y, Pu K, Yang Y, Zhou Y. Nogo‑A/NgR signaling regulates stemness in cancer stem‑like cells derived from U87MG glioblastoma cells. Oncol Lett 2022; 24:230. [PMID: 35720478 PMCID: PMC9185138 DOI: 10.3892/ol.2022.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Abstract
Neurite outgrowth inhibitor A (Nogo-A), a member of the reticulon 4 family, is an axon regeneration inhibitor that is negatively associated with the malignancy of oligodendroglial tumors. It has been suggested that the Nogo-A/Nogo Receptor (NgR) pathway plays a promoting effect in regulating cancer stem-like cells (CSCs) derived from glioblastoma, indicating that Nogo-A could exert different roles in CSCs than those in parental cancer cells. In the present study, CSCs were generated from the human Uppsala 87 malignant glioma (U87MG) cell line. These U87MG-CSCs were characterized by the upregulation of CD44 and CD133, which are two markers of stemness. The expression levels of Nogo-A and the differentiation of U87MG-CSCs were investigated. In addition, the proliferation, invasion and colony formation U87MG-CSCs were examined. Using culture in serum-containing medium, U87MG-CSCs were differentiated into neuron-like cells specifically expressing MAP2, β-III-tubulin and nestin. Nogo-A was upregulated in U87MG-CSCs compared with parental cells. Knockdown of Nogo-A and inhibition of the Nogo-A/NgR signaling pathway in U87MG-CSCs markedly decreased cell viability, cell cycle entry, invasion and tumor formation, indicating that Nogo-A could regulate U87MG-CSC function. Moreover, Nogo-A was involved in intracellular ATP synthesis and scavenging of accumulated reactive oxygen species. Nogo-A/NgR pathway exerted protective effects against hypoxia-induced non-apoptotic and apoptotic cell death. These results suggest that Nogo-A plays an important role in regulating U87MG-CSCs via the Nogo-A/NgR signaling pathway. Nogo-A may also different roles in U87MG-CSCs compared with their parental cells.
Collapse
Affiliation(s)
- Chengjin Ai
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Yu Zhou
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Kunming Pu
- Department of Ultrasound, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610072, P.R. China
| | - Yi Yang
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Yingying Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
3
|
RhoA regulates translation of the Nogo-A decoy SPARC in white matter-invading glioblastomas. Acta Neuropathol 2019; 138:275-293. [PMID: 31062076 PMCID: PMC6660512 DOI: 10.1007/s00401-019-02021-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/09/2023]
Abstract
Glioblastomas strongly invade the brain by infiltrating into the white matter along myelinated nerve fiber tracts even though the myelin protein Nogo-A prevents cell migration by activating inhibitory RhoA signaling. The mechanisms behind this long-known phenomenon remained elusive so far, precluding a targeted therapeutic intervention. This study demonstrates that the prevalent activation of AKT in gliomas increases the ER protein-folding capacity and enables tumor cells to utilize a side effect of RhoA activation: the perturbation of the IRE1α-mediated decay of SPARC mRNA. Once translation is initiated, glioblastoma cells rapidly secrete SPARC to block Nogo-A from inhibiting migration via RhoA. By advanced ultramicroscopy for studying single-cell invasion in whole, undissected mouse brains, we show that gliomas require SPARC for invading into white matter structures. SPARC depletion reduces tumor dissemination that significantly prolongs survival and improves response to cytostatic therapy. Our finding of a novel RhoA-IRE1 axis provides a druggable target for interfering with SPARC production and underscores its therapeutic value.
Collapse
|
4
|
Wen-Jian Y, Song T, Jun T, Kai-Ying X, Jian-Jun W, Si-Hua W. NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein. Arch Biochem Biophys 2018; 663:101-108. [PMID: 30550728 DOI: 10.1016/j.abb.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Nuclear factor 45 (NF-45) has been found to be markedly upregulated in several cancers, including esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms underlying its functions remain unclear. In this study, we confirm that overexpression of NF45 was frequently detected in ESCC tissues and was associated with poor outcome. Overexpression studies revealed that NF-45 promoted cell growth and invasion and upregulated Rac1/Tiam1 signalling via 14-3-3ε protein in ESCC cell lines. This novel mechanism linking upregulated NF45 expression to increased 14-3-3ε/Rac1/Tiam1 signalling and subsequent growth and invasion in ESCC may aid in identification of new therapeutic targets for this disease.
Collapse
Affiliation(s)
- Yao Wen-Jian
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tong Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tan Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xu Kai-Ying
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Jian-Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Si-Hua
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
The isoform A of reticulon-4 (Nogo-A) in cerebrospinal fluid of primary brain tumor patients: influencing factors. Oncotarget 2018; 9:25048-25056. [PMID: 29861852 PMCID: PMC5982740 DOI: 10.18632/oncotarget.25278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
Background The influence of isoform A of reticulon-4 (Nogo-A), also known as neurite outgrowth inhibitor, on primary brain tumor development was reported. Therefore the aim was the evaluation of Nogo-A concentrations in cerebrospinal fluid (CSF) and serum of brain tumor patients compared with non-tumoral individuals. Results All serum results, except for two cases, obtained both in brain tumors and non-tumoral individuals, were below the lower limit of ELISA detection. Cerebrospinal fluid Nogo-A concentrations were significantly lower in primary brain tumor patients compared to non-tumoral individuals. The univariate linear regression analysis found that if white blood cell count increases by 1 × 103/μL, the mean cerebrospinal fluid Nogo-A concentration value decreases 1.12 times. In the model of multiple linear regression analysis predictor variables influencing cerebrospinal fluid Nogo-A concentrations included: diagnosis, sex, and sodium level. The mean cerebrospinal fluid Nogo-A concentration value was 1.9 times higher for women in comparison to men. In the astrocytic brain tumor group higher sodium level occurs with lower cerebrospinal fluid Nogo-A concentrations. We found the opposite situation in non-tumoral individuals. Conclusions Univariate linear regression analysis revealed, that cerebrospinal fluid Nogo-A concentrations change in relation to white blood cell count. In the created model of multiple linear regression analysis we found, that within predictor variables influencing CSF Nogo-A concentrations were diagnosis, sex, and sodium level. Results may be relevant to the search for cerebrospinal fluid biomarkers and potential therapeutic targets in primary brain tumor patients. Materials and methods Nogo-A concentrations were tested by means of enzyme-linked immunosorbent assay (ELISA).
Collapse
|
6
|
Tong S, Chen SC, Xu KY, Fang B, Wang SH, Wang JJ. 14-3-3ζ promotes esophageal squamous cell carcinoma invasion by repressing S1PR2 protein expression through NF-κB signaling. Arch Biochem Biophys 2018; 643:7-13. [DOI: 10.1016/j.abb.2018.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022]
|
7
|
Schwab DE, Lepski G, Borchers C, Trautmann K, Paulsen F, Schittenhelm J. Immunohistochemical comparative analysis of GFAP, MAP - 2, NOGO - A, OLIG - 2 and WT - 1 expression in WHO 2016 classified neuroepithelial tumours and their prognostic value. Pathol Res Pract 2017; 214:15-24. [PMID: 29258767 DOI: 10.1016/j.prp.2017.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
Immunohistochemistry is routinely used in differential diagnosis of tumours of the central nervous system (CNS). The latest 2016 WHO 2016 revision now includes molecular data such as IDH mutation and 1p/19q codeletion thus restructuring glioma classification. Direct comparative information between commonly used immunohistochemical markers for glial tumours GFAP, MAP - 2, NOGO - A, OLIG - 2 and WT - 1 concerning quality and quantity of expression and their relation to the new molecular markers are lacking. We therefore compared the immunohistochemical staining results of all five antibodies in 34 oligodendrogliomas, 106 ependymomas and 423 astrocytic tumours. GFAP expression was reduced in cases with higher WHO grade, oligodendroglial differentiation and in IDH wildtype diffuse astrocytomas. By contrast MAP - 2 expression was significantly increased in diffuse astrocytomas with IDH mutation, while NOGO - A expression was not associated with any molecular marker. WT - 1 expression was significantly decreased in tumours with IDH mutation and ATRX loss. OLIG - 2 was increased in IDH-mutant grade II astrocytomas and in cases with higher proliferation rate. In univariate survival analysis high WT - 1 expression was significantly associated with worse outcome in diffuse astrocytic tumours (log rank p < 0.0001; n = 211; median time: 280 days vs 562 days). None of the markers was prognostic in multivariate survival analysis. Among the evaluated markers MAP - 2, OLIG - 2 and WT - 1 showed the best potential to separate between glioma entities and can be recommended for a standardized immunohistochemical panel.
Collapse
Affiliation(s)
- David Emanuel Schwab
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen and Comprehensive Cancer Center Tuebingen-Stuttgart, Tuebingen, 72076, Germany
| | - Guilherme Lepski
- Department of Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, 72076, Germany
| | - Christian Borchers
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Katrin Trautmann
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen and Comprehensive Cancer Center Tuebingen-Stuttgart, Tuebingen, 72076, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen and Comprehensive Cancer Center Tuebingen-Stuttgart, Tuebingen, 72076, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen and Comprehensive Cancer Center Tuebingen-Stuttgart, Tuebingen, 72076, Germany.
| |
Collapse
|
8
|
Association of genetic variations in RTN4 3′-UTR with risk for clear cell renal cell carcinoma. Fam Cancer 2017; 17:129-134. [DOI: 10.1007/s10689-017-0005-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Wälchli T, Ulmann-Schuler A, Hintermüller C, Meyer E, Stampanoni M, Carmeliet P, Emmert MY, Bozinov O, Regli L, Schwab ME, Vogel J, Hoerstrup SP. Nogo-A regulates vascular network architecture in the postnatal brain. J Cereb Blood Flow Metab 2017; 37:614-631. [PMID: 27927704 PMCID: PMC5381465 DOI: 10.1177/0271678x16675182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, we discovered a new role for the well-known axonal growth inhibitory molecule Nogo-A as a negative regulator of angiogenesis in the developing central nervous system. However, how Nogo-A affected the three-dimensional (3D) central nervous system (CNS) vascular network architecture remained unknown. Here, using vascular corrosion casting, hierarchical, synchrotron radiation μCT-based network imaging and computer-aided network analysis, we found that genetic ablation of Nogo-A significantly increased the three-dimensional vascular volume fraction in the postnatal day 10 (P10) mouse brain. More detailed analysis of the cerebral cortex revealed that this effect was mainly due to an increased number of capillaries and capillary branchpoints. Interestingly, other vascular parameters such as vessel diameter, -length, -tortuosity, and -volume were comparable between both genotypes for non-capillary vessels and capillaries. Taken together, our three-dimensional data showing more vessel segments and branchpoints at unchanged vessel morphology suggest that stimulated angiogenesis upon Nogo-A gene deletion results in the insertion of complete capillary micro-networks and not just single vessels into existing vascular networks. These findings significantly enhance our understanding of how angiogenesis, vascular remodeling, and three-dimensional vessel network architecture are regulated during central nervous system development. Nogo-A may therefore be a potential novel target for angiogenesis-dependent central nervous system pathologies such as brain tumors or stroke.
Collapse
Affiliation(s)
- Thomas Wälchli
- 1 Group of CNS Angiogenesis and Neurovascular Link, and Physician-Scientist Program, Institute for Regenerative Medicine, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Switzerland, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,2 Division of Neurosurgery and Laboratory of Molecular Neuro-Oncology, University Hospital Zurich, Zurich, Switzerland.,3 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | | | - Eric Meyer
- 3 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Marco Stampanoni
- 6 Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.,7 Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Peter Carmeliet
- 8 Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium.,9 Department of Oncology, Laboratory of Angiogenesis and Neurovascular Link, Leuven, Belgium
| | - Maximilian Y Emmert
- 10 Institute for Regenerative Medicine and Clinic for Cardiovascular Surgery, University Hospital Zurich.,11 Wyss Translational Center Zurich, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Oliver Bozinov
- 2 Division of Neurosurgery and Laboratory of Molecular Neuro-Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Luca Regli
- 2 Division of Neurosurgery and Laboratory of Molecular Neuro-Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Martin E Schwab
- 3 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Johannes Vogel
- 12 Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- 10 Institute for Regenerative Medicine and Clinic for Cardiovascular Surgery, University Hospital Zurich.,11 Wyss Translational Center Zurich, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Jin SG, Ryu HH, Li SY, Li CH, Lim SH, Jang WY, Jung S. Nogo-A inhibits the migration and invasion of human malignant glioma U87MG cells. Oncol Rep 2016; 35:3395-402. [PMID: 27109183 DOI: 10.3892/or.2016.4737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/05/2016] [Indexed: 11/06/2022] Open
Abstract
Nogo or reticulon-4 (RTN4), also known as neurite outgrowth inhibitor, is a member of the reticulon family of genes. Nogo-A, one of the three isoforms, is enriched in the central nervous system (CNS). The extracellular domain of Nogo-A, Nogo-66, has neurite growth inhibitory activity that is specific for neurons and is mediated by the Nogo receptor. However, most of its functions are not known yet. We investigated whether Nogo-A modulates the migration and invasion of a glioblastoma cell line, as well as the factors that have an effect on Nogo-A. The expression of Nogo-A was evaluated using western blotting and immunohistochemistry in human brain tumor specimens. U87MG cells were transfected with a sense-Nogo-A cDNA construct (U87-Nogo-A cells expressing Nogo-A) and an empty vector (U87MG-E cells not expressing Nogo-A). The migration and invasion abilities of these cells were investigated using simple scratch and Matrigel invasion assays. Morphologic and cytoskeletal changes were documented by confocal microscopy. The proliferation rate was estimated using doubling time assay. The effects of Nogo-A on Rho activity and phosphorylated cofilin were determined by a Rho activity assay and western blotting. Among primary brain tumors, Nogo-A expression was found in a higher percentage of oligodendrogliomas (90.0%) compared with the percentage in the glioblastomas (68.4%). In addition, the percentage in mixed gliomas was 42.9%, while it was not expressed in pituitary adenomas or schwannomas. The migration and invasion abilities of the U87-Nogo-A cells were decreased compared with the control. In the U87-Nogo-A cell line, Rho activity and phosphorylated cofilin expression were also decreased and morphology became more flat in comparison with the U87MG-E cell line. Nogo-A may inhibit the migration and invasion of human malignant glioma cells via the downregulation of RhoA-cofilin signaling.
Collapse
Affiliation(s)
- Shu-Guang Jin
- Department of Neurosurgery, Ningbo No. 9 Hospital, Zhejiang 315010, P.R. China
| | - Hyang-Hwa Ryu
- Brain Tumor Research Laboratory, and Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun 519-763, Republic of Korea
| | - Song-Yuan Li
- Brain Tumor Research Laboratory, and Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun 519-763, Republic of Korea
| | - Chun-Hao Li
- Brain Tumor Research Laboratory, and Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun 519-763, Republic of Korea
| | - Sa-Hoe Lim
- Brain Tumor Research Laboratory, and Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun 519-763, Republic of Korea
| | - Woo-Youl Jang
- Department of Neurosurgery and Brain Tumor Clinic and Gamma Knife Center, and Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun 519-763, Republic of Korea
| | - Shin Jung
- Brain Tumor Research Laboratory, and Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun 519-763, Republic of Korea
| |
Collapse
|
11
|
Liu X, Cui SJ, Zhu SJ, Geng DC, Yu L. Nogo-C contributes to HCC tumorigenesis via suppressing cell growth and its interactome analysis with comparative proteomics research. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2044-2055. [PMID: 24966913 PMCID: PMC4069910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
OBJECTS Neurite outgrowth inhibitor proteins (Nogos) comprise a family of three major members and are characterized by a conserved RHD domain. Among all the members, Nogo-B was identified to be significantly elevated and to play an important role in liver cirrhosis while Nogo-C was the shortest one and received little attention. The aim of this study is to investigate the relevance and mechanism of Nogo-C involved in Hepatocellular carcinoma (HCC). METHODS The expression of Nogo-C in paired HCC specimens was measured with quantitative RT-PCR. The function of Nogo-C over expressing in SMMC-7721 and WRL-68 HCC cell lines were estimated through cell proliferation assay and colony formation assay. A proteome-wide identification of Nogo-C-binding proteins was performed using affinity purification combined with a highly sensitive mass spectrometric technique. The protein interactions were confirmed using co-IP and immunofluorescence confocal assays. RESULTS Compared with the neighboring pathologically normal tissues, the expression of Nogo-C mRNA was extremely down-regulated in HCC specimens and was significantly related to greater tumor size and worse prognosis. Overexpression of Nogo-C in HCC cell lines resulted in an inhibition of cell growth. A total of 73 proteins were detected and considered in association with Nogo-C, among which B-raf and Nogo-B were validated. CONCLUSION We identify Nogo-C as a tumor suppressor gene in HCC and B-raf as a novel interacting protein. These findings provide new directions for the mechanism research of Nogo family.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Genetic Engineering, Fudan UniversityShanghai, China
- National Engineering Center for Biochip at ShanghaiShanghai, China
| | - Shu-Jian Cui
- College of Bioscience and Biotechnology, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou UniversityYangzhou, China
| | - Shi-Jun Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - De-Chun Geng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Fudan UniversityShanghai, China
| |
Collapse
|
12
|
LIU FENG, LIAO FAN, LI WEI, HAN YONGFENG, LIAO DAGUANG. Progesterone alters Nogo-A, GFAP and GAP-43 expression in a rat model of traumatic brain injury. Mol Med Rep 2014; 9:1225-31. [DOI: 10.3892/mmr.2014.1967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/31/2014] [Indexed: 11/06/2022] Open
|
13
|
Abstract
Nogo-A is an important axonal growth inhibitor in the adult and developing CNS. In vitro, Nogo-A has been shown to inhibit migration and cell spreading of neuronal and nonneuronal cell types. Here, we studied in vivo and in vitro effects of Nogo-A on vascular endothelial cells during angiogenesis of the early postnatal brain and retina in which Nogo-A is expressed by many types of neurons. Genetic ablation or virus-mediated knock down of Nogo-A or neutralization of Nogo-A with an antibody caused a marked increase in the blood vessel density in vivo. In culture, Nogo-A inhibited spreading, migration, and sprouting of primary brain microvascular endothelial cells (MVECs) in a dose-dependent manner and induced the retraction of MVEC lamellipodia and filopodia. Mechanistically, we show that only the Nogo-A-specific Delta 20 domain exerts inhibitory effects on MVECs, but the Nogo-66 fragment, an inhibitory domain common to Nogo-A, -B, and -C, does not. Furthermore, the action of Nogo-A Delta 20 on MVECs required the intracellular activation of the Ras homolog gene family, member A (Rho-A)-associated, coiled-coil containing protein kinase (ROCK)-Myosin II pathway. The inhibitory effects of early postnatal brain membranes or cultured neurons on MVECs were relieved significantly by anti-Nogo-A antibodies. These findings identify Nogo-A as an important negative regulator of developmental angiogenesis in the CNS. They may have important implications in CNS pathologies involving angiogenesis such as stroke, brain tumors, and retinopathies.
Collapse
|
14
|
Ra SH, Li X, Binder S. Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin. Mod Pathol 2011; 24:963-73. [PMID: 21743436 DOI: 10.1038/modpathol.2011.39] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Actinic keratosis is widely believed to be a neoplastic lesion and a precursor to invasive squamous cell carcinoma. However, there has been some debate as to whether actinic keratosis is in fact actually squamous cell carcinoma and should be treated as such. As the clinical management and prognosis of patients is widely held to be different for each of these lesions, our goal was to identify unique gene signatures using DNA microarrays to discriminate among normal skin, actinic keratosis, and squamous cell carcinoma, and examine the molecular pathways of carcinogenesis involved in the progression from normal skin to squamous cell carcinoma. Formalin-fixed and paraffin-embedded blocks of skin: five normal skins (pooled), six actinic keratoses, and six squamous cell carcinomas were retrieved. The RNA was extracted and amplified. The labeled targets were hybridized to the Affymetrix human U133plus2.0 array and the acquisition and initial quantification of array images were performed using the GCOS (Affymetrix). The subsequent data analyses were performed using DNA-Chip Analyzer and Partek Genomic Suite 6.4. Significant differential gene expression (>2 fold change, P<0.05) was seen with 382 differentially expressed genes between squamous cell carcinoma and normal skin, 423 differentially expressed genes between actinic keratosis and normal skin, and 9 differentially expressed genes between actinic keratosis and squamous cell carcinoma. The differentially expressed genes offer the possibility of using DNA microarrays as a molecular diagnostic tool to distinguish between normal skin, actinic keratosis, and squamous cell carcinoma. In addition, the differentially expressed genes and their molecular pathways could be potentially used as prognostic markers or targets for future therapeutic innovations.
Collapse
Affiliation(s)
- Seong Hui Ra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | |
Collapse
|