1
|
Hu X, Li R, Wu Y, Li Y, Zhong X, Zhang G, Kang Y, Liu S, Xie L, Ye J, Xiao J. Thermosensitive heparin-poloxamer hydrogel encapsulated bFGF and NGF to treat spinal cord injury. J Cell Mol Med 2020; 24:8166-8178. [PMID: 32515141 PMCID: PMC7348165 DOI: 10.1111/jcmm.15478] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/18/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
The application of growth factors (GFs) for treating chronic spinal cord injury (SCI) has been shown to promote axonal regeneration and functional recovery. However, direct administration of GFs is limited by their rapid degradation and dilution at the injured sites. Moreover, SCI recovery is a multifactorial process that requires multiple GFs to participate in tissue regeneration. Based on these facts, controlled delivery of multiple growth factors (GFs) to lesion areas is becoming an attractive strategy for repairing SCI. Presently, we developed a GFs‐based delivery system (called GFs‐HP) that consisted of basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and heparin‐poloxamer (HP) hydrogel through self‐assembly mode. This GFs‐HP was a kind of thermosensitive hydrogel that was suitable for orthotopic administration in vivo. Meanwhile, a 3D porous structure of this hydrogel is commonly used to load large amounts of GFs. After single injection of GFs‐HP into the lesioned spinal cord, the sustained release of NGF and bFGF from HP could significantly improve neuronal survival, axon regeneration, reactive astrogliosis suppression and locomotor recovery, when compared with the treatment of free GFs or HP. Moreover, we also revealed that these neuroprotective and neuroregenerative effects of GFs‐HP were likely through activating the phosphatidylinositol 3 kinase and protein kinase B (PI3K/Akt) and mitogen‐activated protein kinase/extracellular signal‐regulated kinase (MAPK/ERK) signalling pathways. Overall, our work will provide an effective therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Rui Li
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| | - Yi Li
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xingfeng Zhong
- Department of Anesthesia, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guanyinsheng Zhang
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Yanmin Kang
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Shuhua Liu
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junming Ye
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| |
Collapse
|
2
|
Zhu H, Li F, Yu WJ, WANG WJ, Li L, Wan LD, Le Y, Ding WL. Effect of Hypoxia/Reoxygenation on Cell Viability and Expression and Secretion of Neurotrophic Factors (NTFs) in Primary Cultured Schwann Cells. Anat Rec (Hoboken) 2010; 293:865-70. [DOI: 10.1002/ar.21105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Ngiam N, Peltekova V, Engelberts D, Otulakowski G, Post M, Kavanagh BP. Early growth response-1 worsens ventilator-induced lung injury by up-regulating prostanoid synthesis. Am J Respir Crit Care Med 2010; 181:947-56. [PMID: 20110555 DOI: 10.1164/rccm.200908-1297oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Ventilator-induced lung injury (VILI) is common and serious and may be mediated in part by prostanoids. We have demonstrated increased expression of the early growth response-1 (Egr1) gene by injurious ventilation, but whether-or how-such up-regulation contributes to injury is unknown. OBJECTIVES We sought to define the role of Egr1 in the pathogenesis of VILI. METHODS An in vivo murine model of VILI was used, and Egr1(+/+) (wild-type) and Egr1(-/-) mice were studied; the effects of prostaglandin E receptor subtype 1 (EP1) inhibition were assessed. MEASUREMENTS AND MAIN RESULTS Injurious ventilation caused lung injury in wild-type mice, but less so in Egr1(-/-) mice. The injury was associated with expression of EGR1 protein, which was localized to type II cells and macrophages and was concentrated in nuclear extracts. There was a concomitant increase in expression of phosphorylated p44/p42 mitogen-activated protein kinases. The prostaglandin E synthase (mPGES-1) gene has multiple EGR1 binding sites on its promoter, and induction of mPGES-1 mRNA (as well as the prostanoid product, PGE2) by injurious ventilation was highly dependent on the presence of the Egr1 gene. PGE2 mediates many lung effects via EP1 receptors, and EP1 blockade (with ONO-8713) lessened lung injury. CONCLUSIONS This is the first demonstration of a mechanism whereby expression of a novel gene (Egr1) can contribute to VILI via a prostanoid-mediated pathway.
Collapse
Affiliation(s)
- Nicola Ngiam
- Physiology and Experimental Medicine, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
4
|
Sun JJ, Liu Y, Ye ZR. Effects of P2Y1 receptor on glial fibrillary acidic protein and glial cell line-derived neurotrophic factor production of astrocytes under ischemic condition and the related signaling pathways. Neurosci Bull 2008; 24:231-43. [PMID: 18668152 DOI: 10.1007/s12264-008-0430-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE The present study aimed to explore the role of P2Y(1) receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. METHODS Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y(1) receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. RESULTS Blockage of P2Y(1) receptor with the selective antagonist N(6)-methyl-2'-deoxyadenosine 3',5'-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y(1) receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y(1) receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase1/2 (MEK1/2) U0126, an important molecule of Ras/extracellular signal-regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. CONCLUSION These results suggest that P2Y(1) receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.
Collapse
Affiliation(s)
- Jing-Jun Sun
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | |
Collapse
|