1
|
Bayır H, Anthonymuthu TS, Tyurina YY, Patel SJ, Amoscato AA, Lamade AM, Yang Q, Vladimirov GK, Philpott CC, Kagan VE. Achieving Life through Death: Redox Biology of Lipid Peroxidation in Ferroptosis. Cell Chem Biol 2020; 27:387-408. [PMID: 32275865 DOI: 10.1016/j.chembiol.2020.03.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Redox balance is essential for normal brain, hence dis-coordinated oxidative reactions leading to neuronal death, including programs of regulated death, are commonly viewed as an inevitable pathogenic penalty for acute neuro-injury and neurodegenerative diseases. Ferroptosis is one of these programs triggered by dyshomeostasis of three metabolic pillars: iron, thiols, and polyunsaturated phospholipids. This review focuses on: (1) lipid peroxidation (LPO) as the major instrument of cell demise, (2) iron as its catalytic mechanism, and (3) thiols as regulators of pro-ferroptotic signals, hydroperoxy lipids. Given the central role of LPO, we discuss the engagement of selective and specific enzymatic pathways versus random free radical chemical reactions in the context of the phospholipid substrates, their biosynthesis, intracellular location, and related oxygenating machinery as participants in ferroptotic cascades. These concepts are discussed in the light of emerging neuro-therapeutic approaches controlling intracellular production of pro-ferroptotic phospholipid signals and their non-cell-autonomous spreading, leading to ferroptosis-associated necroinflammation.
Collapse
Affiliation(s)
- Hülya Bayır
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Tamil S Anthonymuthu
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarju J Patel
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew M Lamade
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Qin Yang
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Georgy K Vladimirov
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Valerian E Kagan
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| |
Collapse
|
2
|
Kaid C, Assoni A, Marçola M, Semedo-Kuriki P, Bortolin RH, Carvalho VM, Okamoto OK. Proteome and miRNome profiling of microvesicles derived from medulloblastoma cell lines with stem-like properties reveals biomarkers of poor prognosis. Brain Res 2020; 1730:146646. [PMID: 31917138 DOI: 10.1016/j.brainres.2020.146646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 01/13/2023]
Abstract
Primary central nervous system (CNS) tumors are the most common deadly childhood cancer. Several patients with medulloblastoma experience local or metastatic recurrences after standard treatment, a condition associated with very poor prognosis. Current neuroimaging techniques do not accurately detect residual stem-like medulloblastoma cells promoting tumor relapses. In attempt to identify candidate tumor markers that could be circulating in blood or cerebrospinal (CSF) fluid of patients, we evaluated the proteome and miRNome content of extracellular microvesicles (MVs) released by highly-aggressive stem-like medulloblastoma cells overexpressing the pluripotent factor OCT4A. These cells display enhanced tumor initiating capability and resistance to chemotherapeutic agents. A common set of 464 proteins and 10 microRNAs were exclusively detected in MVs of OCT4A-overexpressing cells from four distinct medulloblastoma cell lines, DAOY, CHLA-01-MED, D283-MED, and USP13-MED. The interactome mapping of these exclusive proteins and miRNAs revealed ERK, PI3K/AKT/mTOR, EGF/EGFR, and stem cell self-renewal as the main oncogenic signaling pathways altered in these aggressive medulloblastoma cells. Of these MV cargos, four proteins (UBE2M, HNRNPCL2, HNRNPCL3, HNRNPCL4) and five miRNAs (miR-4449, miR-500b, miR-3648, miR-1291, miR-3607) have not been previously reported in MVs from normal tissues and in CSF. These proteins and miRNAs carried within MVs might serve as biomarkers of aggressive stem-like medulloblastoma cells to improve clinical benefit by helping refining diagnosis, patient stratification, and early detection of relapsed disease.
Collapse
Affiliation(s)
- Carolini Kaid
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Amanda Assoni
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Marina Marçola
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Patricia Semedo-Kuriki
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | - Oswaldo Keith Okamoto
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil; Hemotherapy and Cellular Therapy Department, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| |
Collapse
|
3
|
Liu H, Qiu F, Yang X, Zhao H, Bian B, Wang L. Pharmacokinetics of the Yougui pill in experimental autoimmune encephalomyelitis model rats and its pharmacological activity in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2357-2370. [PMID: 31409970 PMCID: PMC6643060 DOI: 10.2147/dddt.s203874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/17/2019] [Indexed: 01/19/2023]
Abstract
Purpose To determine the pharmacokinetic properties and pharmacological activity of the Yougui pill (YGP), which is a well-known Chinese medicine formula. Methods An ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry via electrospray ionization interface (UPLC-ESI-MS/MS) method was developed and validated for the simultaneous determination of several components in rat plasma. The method was then successfully applied to the pharmacokinetics of six bioactive components in experimental autoimmune encephalomyelitis (EAE) model rats after oral administration of YGP. The expression of cAMP response element binding protein (CREB) and growth-associated protein-43 (GAP-43) in SH-SY5Y cells treated with these six components, YGP extract, and YGP-containing serum were investigated to determine the pharmacodyamic material basis of YGP. Six bioactive components were detected in rat plasma, including songorine, benzoylhypaconitine, benzoylmesaconitine, neoline, karacoline and sweroside, which were rapidly absorbed after administration in EAE model rats. Results The main pharmacokinetic parameters of six bioactive components were determined, and the constituents increased CREB and GAP-43 expressions in serum-deprived SH-SY5Y cells. The YGP-containing serum, six bioactive components, and YGP extract significantly increased the expression of both CREB and GAP-43 (P<0.01), and there was no difference between the three groups. Conclusion The songorine, benzoylhypaconitine, benzoylmesaconitine, neoline, karacoline and sweroside were confirmed as the major bioactive components in YGP. The acquired data will be helpful for understanding the pharmacological and effective constituents of YGP.
Collapse
Affiliation(s)
- Haolong Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China.,Beijing Institute For Drug Control, Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing 100035, China
| | - Feng Qiu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Xinwei Yang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Buljan M, Blattmann P, Aebersold R, Boutros M. Systematic characterization of pan-cancer mutation clusters. Mol Syst Biol 2018; 14:e7974. [PMID: 29572294 PMCID: PMC5866917 DOI: 10.15252/msb.20177974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has shown that driver genes can often be distinguished not only by the elevated mutation frequency but also by specific nucleotide positions that accumulate changes at a high rate. However, properties associated with a residue's potential to drive tumorigenesis when mutated have not yet been systematically investigated. Here, using a novel methodological approach, we identify and characterize a compendium of 180 hotspot residues within 160 human proteins which occur with a significant frequency and are likely to have functionally relevant impact. We find that such mutations (i) are more prominent in proteins that can exist in the on and off state, (ii) reflect the identity of a tumor of origin, and (iii) often localize within interfaces which mediate interactions with other proteins or ligands. Following, we further examine structural data for human protein complexes and identify a number of additional protein interfaces that accumulate cancer mutations at a high rate. Jointly, these analyses suggest that disruption and dysregulation of protein interactions can be instrumental in switching functions of cancer proteins and activating downstream changes.
Collapse
Affiliation(s)
- Marija Buljan
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland .,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany .,Department Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
5
|
Ding X, Lu J, Yu R, Wang X, Wang T, Dong F, Peng B, Wu W, Liu H, Geng Y, Zhang R, Ma H, Cheng J, Yu M, Fang S. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1. PLoS One 2016; 11:e0156017. [PMID: 27223893 PMCID: PMC4880285 DOI: 10.1371/journal.pone.0156017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics.
Collapse
Affiliation(s)
- Xiaoman Ding
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruoxi Yu
- Southern Medical University, Guangzhou, China
| | - Xin Wang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ting Wang
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Fangyuan Dong
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Bo Peng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Weihua Wu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hui Liu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yijie Geng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Renli Zhang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hanwu Ma
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinquan Cheng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Muhua Yu
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
- * E-mail: (MHY); (SSF)
| | - Shisong Fang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- * E-mail: (MHY); (SSF)
| |
Collapse
|
6
|
Heese K. Establishing an in vivo p48ZnF bioluminescence mouse brain imaging model. Neurosci Lett 2013; 542:97-101. [PMID: 23470633 DOI: 10.1016/j.neulet.2013.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 02/20/2013] [Accepted: 02/23/2013] [Indexed: 11/26/2022]
Abstract
p48ZnF is a C3H1 zinc finger domain-containing protein that is involved in the control of gene transcription and translation. In the present study a novel transgenic p48ZnF mouse model is described that is useful for in vivo brain imaging using luciferase as bioluminescence-mediating reporter gene. Yeast two-hybrid screening and western blot analyses revealed Drg1 (developmentally regulated GTP binding protein 1) and Pcbp1 (poly (rC)-binding protein 1) as p48ZnF-associated proteins. Interestingly, p48ZnF' cellular location of action depends on the cell's differentiation status: nuclear in proliferating cells and cytoplasmic in differentiated neurons.
Collapse
Affiliation(s)
- Klaus Heese
- Department of Biomedical Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea.
| |
Collapse
|