1
|
Xiong Q, Wang H, Feng J, Song L, Wu G, Xu Y. Lack of Nr2e1 expression in hepatocytes impaired cell survival and aggravated palmitate-induced oxidative stress. Adv Med Sci 2024; 69:320-330. [PMID: 38901547 DOI: 10.1016/j.advms.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Nuclear receptor subfamily 2 group E member 1 (Nr2e1) has been regarded as an essential regulator in neural stem cells. However, its function is still not clear in hepatocytes. This study aimed to clarify the effects of Nr2e1-deficiency in hepatocytes in lipotoxic conditions. MATERIALS/METHODS Nr2e1-knockdown AML12 cells were generated by lentiviral vector transfection. The influences of Nr2e1-deficiency on hepatocyte survival were determined by cell cycle progression and cell apoptosis rate using flow cytometry. Real-time quantitative PCR and Western blot were used to examine the genes and protein expression related to apoptosis, lipid metabolism, and oxidative stress. Meanwhile, RNA sequencing was adopted in liver samples from Nr2e1-knockout (Nr2e1-KO) mice. RESULTS Nr2e1 expression was observed with a significant decrease in AML12 cells after palmitic acid-stimulation. Knockdown of Nr2e1 in AML12 cells resulted in increased sensitivity to lipotoxicity, evidenced by a partial G0/G1 cell-cycle arrest and higher rates of cell apoptosis. Moreover, Nr2e1-knockdown AML12 cells presented increased gene expressions relative to lipid synthesis but decreased levels of β-oxidation related genes. Lack of Nr2e1 augmented palmitate-induced oxidative stress in hepatocytes. In vivo, differential genes in Nr2e1-KO mice liver were enriched in pathways associated with liver regeneration and cell proliferation. CONCLUSIONS This study indicated that hepatocytes lacking Nr2e1 were more susceptible to lipotoxic-mediated damage. Nr2e1 may serve as a potential target for the development of novel therapies for lipotoxicity-induced liver injury.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Endocrinology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China; Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huawei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jieyuan Feng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Linyang Song
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guijun Wu
- Clinical Teaching and Research Sections, School of Nursing, Dalian University, Dalian, Liaoning, China; Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Masuda LHP, Sabino AU, Reinitz J, Ramos AF, Machado-Lima A, Andrioli LP. Global repression by tailless during segmentation. Dev Biol 2024; 505:11-23. [PMID: 37879494 PMCID: PMC10949167 DOI: 10.1016/j.ydbio.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The orphan nuclear receptor Tailless (Tll) exhibits conserved roles in brain formation and maintenance that are shared, for example, with vertebrate orthologous forms (Tlx). However, the early expression of tll in two gap domains in the segmentation cascade of Drosophila is unusual even for most other insects. Here we investigate tll regulation on pair-rule stripes. With ectopic misexpression of tll we detected unexpected repression of almost all pair-rule stripes of hairy (h), even-skipped (eve), runt (run), and fushi-tarazu (ftz). Examining Tll embryonic ChIP-chip data with regions mapped as Cis-Regulatory Modules (CRMs) of pair-rule stripes we verified Tll interactions to these regions. With the ChIP-chip data we also verified Tll interactions to the CRMs of gap domains and in the misexpression assay, Tll-mediated repression on Kruppel (Kr), kni (kni) and giant (gt) according to their differential sensitivity to Tll. These results with gap genes confirmed previous data from the literature and argue against indirect repression roles of Tll in the striped pattern. Moreover, the prediction of Tll binding sites in the CRMs of eve stripes and the mathematical modeling of their removal using an experimentally validated theoretical framework shows effects on eve stripes compatible with the absence of a repressor binding to the CRMs. In addition, modeling increased tll levels in the embryo results in the differential repression of eve stripes, agreeing well with the results of the misexpression assay. In genetic assays we investigated eve 5, that is strongly repressed by the ectopic domain and representative of more central stripes not previously implied to be under direct regulation of tll. While this stripe is little affected in tll-, its posterior border is expanded in gt- but detected with even greater expansion in gt-;tll-. We end up by discussing tll with key roles in combinatorial repression mechanisms to contain the expression of medial patterns of the segmentation cascade in the extremities of the embryo.
Collapse
Affiliation(s)
| | - Alan Utsuni Sabino
- Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Reinitz
- Departments of Statistics, Ecology and Evolution, Molecular Genetics & Cell Biology, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | | | - Ariane Machado-Lima
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Paulo Andrioli
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Trangle SS, Rosenberg T, Parnas H, Levy G, Bar E, Marco A, Barak B. In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development. Mol Psychiatry 2023; 28:1112-1127. [PMID: 36577841 DOI: 10.1038/s41380-022-01921-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a heterozygous micro-deletion in the WS critical region (WSCR) and is characterized by hyper-sociability and neurocognitive abnormalities. Nonetheless, whether and to what extent WSCR deletion leads to epigenetic modifications in the brain and induces pathological outcomes remains largely unknown. By examining DNA methylation in frontal cortex, we revealed genome-wide disruption in the methylome of individuals with WS, as compared to typically developed (TD) controls. Surprisingly, differentially methylated sites were predominantly annotated as introns and intergenic loci and were found to be highly enriched around binding sites for transcription factors that regulate neuronal development, plasticity and cognition. Moreover, by utilizing enhancer-promoter interactome data, we confirmed that most of these loci function as active enhancers in the human brain or as target genes of transcriptional networks associated with myelination, oligodendrocyte (OL) differentiation, cognition and social behavior. Cell type-specific methylation analysis revealed aberrant patterns in the methylation of active enhancers in neurons and OLs, and important neuron-glia interactions that might be impaired in individuals with WS. Finally, comparison of methylation profiles from blood samples of individuals with WS and healthy controls, along with other data collected in this study, identified putative targets of endophenotypes associated with WS, which can be used to define brain-risk loci for WS outside the WSCR locus, as well as for other associated pathologies. In conclusion, our study illuminates the brain methylome landscape of individuals with WS and sheds light on how these aberrations might be involved in social behavior and physiological abnormalities. By extension, these results may lead to better diagnostics and more refined therapeutic targets for WS.
Collapse
Affiliation(s)
- Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.,The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
4
|
Xu M, Chen G, Dong Y, Xiang S, Xue M, Liu Y, Song H, Song H, Wang Y. Stable expression of a truncated TLX variant drives differentiation of induced pluripotent stem cells into self-renewing neural stem cells for production of extracellular vesicles. Stem Cell Res Ther 2022; 13:436. [PMID: 36056423 PMCID: PMC9438273 DOI: 10.1186/s13287-022-03131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neural stem cells (NSCs)-derived extracellular vesicles (EVs) possess great potential in treating severe neurological and cerebrovascular diseases, as they carry the modulatory and regenerative ingredients of NSCs. Induced pluripotent stem cells (iPSCs)-derived NSCs culture represents a sustainable source of therapeutic EVs. However, there exist two major challenges in obtaining a scalable culture of NSCs for high-efficiency EVs production: (1) the heterogeneity of iPSC-derived NSCs culture impairs the production of high-quality EVs and (2) the intrinsic propensity of neuronal or astroglial differentiation of NSCs during prolonged culturing reduces the number of NSCs for preparing EVs. A NSCs strain that is amenable to stable self-renewal and proliferation is thus greatly needed for scalable and long-term culture. Methods Various constructs of the genes encoding the orphan nuclear receptor NR2E1 (TLX) were stably transfected in iPSCs, which were subsequently cultured in a variety of differentiation media for generation of iNSCsTLX. Transcriptomic and biomarker profile of iNSCsTLX were investigated. In particular, the positivity ratios of Sox2/Nestin and Musashi/Vimentin were used to gauge the homogeneity of the iNSCsTLX culture. The iNSCs expressing a truncated version of TLX (TLX-TP) was expanded for up to 45 passages, after which its neuronal differentiation potential and EV activity were evaluated. Results Stable expression of TLX-TP could confer the iPSCs with rapid and self-driven differentiation into NSCs through stable passaging up to 225 days. The long-term culture of NSCs maintained the highly homogenous expression of NSC-specific biomarkers and potential of neuronal differentiation. EVs harvested from the TLX-expressing NSCs cultures exhibited anti-inflammatory and neuroprotective activities. Conclusions iPSC-derived NSCs stably expressing TLX-TP is a promising cell line for scalable production of EVs, which should be further exploited for therapeutic development in neurological treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03131-4.
Collapse
Affiliation(s)
- Mingzhi Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Gang Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yanan Dong
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Shensi Xiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Miaomiao Xue
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yongxue Liu
- Anti-Radiation Medical Laboratory, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Haijing Song
- Emergency Medicine, PLA Strategic Support Force Medical Center, Beijing, 100101, China.
| | - Haifeng Song
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Yi Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences(Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
5
|
Puebla M, Tapia PJ, Espinoza H. Key Role of Astrocytes in Postnatal Brain and Retinal Angiogenesis. Int J Mol Sci 2022; 23:ijms23052646. [PMID: 35269788 PMCID: PMC8910249 DOI: 10.3390/ijms23052646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis is a key process in various physiological and pathological conditions in the nervous system and in the retina during postnatal life. Although an increasing number of studies have addressed the role of endothelial cells in this event, the astrocytes contribution in angiogenesis has received less attention. This review is focused on the role of astrocytes as a scaffold and in the stabilization of the new blood vessels, through different molecules release, which can modulate the angiogenesis process in the brain and in the retina. Further, differences in the astrocytes phenotype are addressed in glioblastoma, one of the most devastating types of brain cancer, in order to provide potential targets involved in the cross signaling between endothelial cells, astrocytes and glioma cells, that mediate tumor progression and pathological angiogenesis. Given the relevance of astrocytes in angiogenesis in physiological and pathological conditions, future studies are required to better understand the interrelation between endothelial and astrocyte signaling pathways during this process.
Collapse
Affiliation(s)
- Mariela Puebla
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Av. Plaza 680, Las Condes, Santiago 7550000, Chile;
| | - Pablo J. Tapia
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Av. Lota 2465, Providencia, Santiago 7500000, Chile;
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Av. República 71, Santiago 8320000, Chile
| | - Hilda Espinoza
- Facultad de Ciencias de la Salud, Universidad del Alba, Av. Ejército Libertador 171, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
6
|
Nelson AT, Wang Y, Nelson ER. TLX, an Orphan Nuclear Receptor With Emerging Roles in Physiology and Disease. Endocrinology 2021; 162:6360449. [PMID: 34463725 PMCID: PMC8462384 DOI: 10.1210/endocr/bqab184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 12/14/2022]
Abstract
TLX (NR2E1), an orphan member of the nuclear receptor superfamily, is a transcription factor that has been described to be generally repressive in nature. It has been implicated in several aspects of physiology and disease. TLX is best known for its ability to regulate the proliferation of neural stem cells and retinal progenitor cells. Dysregulation, overexpression, or loss of TLX expression has been characterized in numerous studies focused on a diverse range of pathological conditions, including abnormal brain development, psychiatric disorders, retinopathies, metabolic disease, and malignant neoplasm. Despite the lack of an identified endogenous ligand, several studies have described putative synthetic and natural TLX ligands, suggesting that this receptor may serve as a therapeutic target. Therefore, this article aims to briefly review what is known about TLX structure and function in normal physiology, and provide an overview of TLX in regard to pathological conditions. Particular emphasis is placed on TLX and cancer, and the potential utility of this receptor as a therapeutic target.
Collapse
Affiliation(s)
- Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Correspondence: Erik R. Nelson, PhD, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S Goodwin Ave (MC-114), Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
8
|
Braccioli L, Vervoort SJ, Adolfs Y, Heijnen CJ, Basak O, Pasterkamp RJ, Nijboer CH, Coffer PJ. FOXP1 Promotes Embryonic Neural Stem Cell Differentiation by Repressing Jagged1 Expression. Stem Cell Reports 2018; 9:1530-1545. [PMID: 29141232 PMCID: PMC5688236 DOI: 10.1016/j.stemcr.2017.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
Mutations in FOXP1 have been linked to neurodevelopmental disorders including intellectual disability and autism; however, the underlying molecular mechanisms remain ill-defined. Here, we demonstrate with RNA and chromatin immunoprecipitation sequencing that FOXP1 directly regulates genes controlling neurogenesis. We show that FOXP1 is expressed in embryonic neural stem cells (NSCs), and modulation of FOXP1 expression affects both neuron and astrocyte differentiation. Using a murine model of cortical development, FOXP1-knockdown in utero was found to reduce NSC differentiation and migration during corticogenesis. Furthermore, transplantation of FOXP1-knockdown NSCs in neonatal mice after hypoxia-ischemia challenge demonstrated that FOXP1 is also required for neuronal differentiation and functionality in vivo. FOXP1 was found to repress the expression of Notch pathway genes including the Notch-ligand Jagged1, resulting in inhibition of Notch signaling. Finally, blockade of Jagged1 in FOXP1-knockdown NSCs rescued neuronal differentiation in vitro. Together, these data support a role for FOXP1 in regulating embryonic NSC differentiation by modulating Notch signaling. FOXP1 promotes astrocyte and neuronal differentiation of NSCs in vitro FOXP1 promotes neuronal differentiation of NSCs in vivo FOXP1 transcriptionally regulates pro-neural genes and represses Notch pathway genes FOXP1 promotes neuronal differentiation by limiting Jagged1 expression
Collapse
Affiliation(s)
- Luca Braccioli
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht 3508 AB, the Netherlands; Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Stephin J Vervoort
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht 3508 AB, the Netherlands.
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands.
| |
Collapse
|
9
|
Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription. Oncogene 2018; 37:3340-3355. [PMID: 29555975 PMCID: PMC6013422 DOI: 10.1038/s41388-018-0198-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/11/2018] [Accepted: 02/03/2018] [Indexed: 02/03/2023]
Abstract
The metastatic castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer, in which the expression of androgen receptor (AR) is highly heterogeneous. Indeed, lower AR expression and attenuated AR signature activity is shown in CRPC tissues, especially in the subset of neuroendocrine prostate cancer (NEPC) and prostate cancer stem-like cells (PCSCs). However, the significance of AR downregulation in androgen insensitivity and de-differentiation of tumor cells in CRPC is poorly understood and much neglected. Our previous study shows that the orphan nuclear receptor TLX (NR2E1), which is upregulated in prostate cancer, plays an oncogenic role in prostate carcinogenesis by suppressing oncogene-induced senescence. In the present study, we further established that TLX exhibited an increased expression in metastatic CRPC. Further analyses showed that overexpression of TLX could confer resistance to androgen deprivation and anti-androgen in androgen-dependent prostate cancer cells in vitro and in vivo, whereas knockdown of endogenous TLX could potentiate the sensitivity to androgen deprivation and anti-androgen in prostate cancer cells. Our study revealed that the TLX-induced resistance to androgen deprivation and anti-androgen was mediated through its direct suppression of AR gene transcription and signaling in both androgen-stimulated and -unstimulated prostate cancer cells. We also characterized that TLX could bind directly to AR promoter and repress AR transcription by recruitment of histone modifiers, including HDAC1, HDAC3, and LSD1. Together, our present study shows, for the first time, that TLX can contribute to androgen insensitivity in CRPC via repression of AR gene transcription and signaling, and also implicates that targeting the druggable TLX may have a potential therapeutic significance in CRPC management, particularly in NEPC and PCSCs.
Collapse
|
10
|
|
11
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
12
|
O'Leary JD, O'Leary OF, Cryan JF, Nolan YM. Regulation of behaviour by the nuclear receptor TLX. GENES BRAIN AND BEHAVIOR 2016; 17:e12357. [PMID: 27790850 DOI: 10.1111/gbb.12357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 01/10/2023]
Abstract
The orphan nuclear receptor Tlx (Nr2e1) is a key regulator of both embryonic and adult hippocampal neurogenesis. Several different mouse models have been developed which target Tlx in vivo including spontaneous deletion models (from birth) and targeted and conditional knockouts. Although some conflicting findings have been reported, for the most part studies have demonstrated that Tlx is important in regulating processes that underlie neurogenesis, spatial learning, anxiety-like behaviour and interestingly, aggression. More recent data have demonstrated that disrupting Tlx during early life induces hyperactivity and that Tlx plays a role in emotional regulation. Moreover, there are sex- and age-related differences in some behaviours in Tlx knockout mice during adolescence and adulthood. Here, we discuss the role of Tlx in motor-, cognitive-, aggressive- and anxiety-related behaviours during adolescence and adulthood. We examine current evidence which provides insight into Tlx during neurodevelopment, and offer our thoughts on the function of Tlx in brain and behaviour. We further hypothesize that Tlx is a key target in understanding the emergence of neurobiological disorders during adolescence and early adulthood.
Collapse
Affiliation(s)
- J D O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - O F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - J F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|