1
|
Li HL, Hao GM, Tang SJ, Sun HH, Fang YS, Pang X, Liu H, Ji Q, Wang XR, Tian JY, Jiang KX, Song XZ, Zhu RX, Han J, Wang W. HuoXue JieDu formula improves diabetic retinopathy in rats by regulating microRNAs. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113616. [PMID: 33271246 DOI: 10.1016/j.jep.2020.113616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HuoXue JieDu Formula (HXJDF) originates from classical formulas and was formed based on clinical experience. It is composed of Euonymus alatus (Thunb.) Siebold, Panax notoginseng (Burkill) F.H. Chen, the roots of Anguina kirilowii (Maxim.) Kuntze, and Coptis omeiensis (C. Chen) C.Y.Cheng. HXJDF prevents the deterioration of diabetic retinopathy. AIM OF THE STUDY To evaluate the effects of HXJDF on diabetic retinopathy in rats and investigate the roles of miRNAs in the effects of HXJDF. MATERIALS AND METHODS A single intraperitoneal injection of streptozotocin (STZ) (65 mg/kg) was used to induce diabetes in rats. Rats were divided into three groups: normal, diabetic, and diabetic + HXJDF. Rats were treated with HXJDF (15.4 g/kg) or water by oral gavage for twelve weeks. At the end of the treatment, rats were anaesthetized, and retinal haemodynamic changes were measured. Then, the retinas were removed and examined by haematoxylin and eosin (HE) staining and TUNEL assays. In addition, miRNA expression profiling was performed using miRNA microarrays and further validated by quantitative real-time PCR (qRT-PCR). RESULTS Diabetes reduced peak systolic velocity (PSV), end-diastolic velocity (EDV), mean velocity (MV) and central retinal vein velocity (CRV) but increased the resistance index (RI) and pulsatility index (PI). In addition, in the diabetic group, retinal cell arrangement was disordered and loosely arranged, the retinal thickness and retinal ganglion cell (RGC) number decreased, and retinal cell apoptosis increased. In addition, 11 miRNAs were upregulated and 4 miRNAs were downregulated. After treatment, HXJDF improved retinal haemodynamics and morphologic changes, restored retinal thickness and RGC number and decreased retinal cell apoptosis. Furthermore, the changes in miRNA expression were significantly abolished by HXJDF. CONCLUSION HXJDF may prevent DR by regulating the expression of miRNAs.
Collapse
Affiliation(s)
- Hong-Li Li
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Gai-Mei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Shi-Jie Tang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui-Hui Sun
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yong-Sheng Fang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xinxin Pang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Hanying Liu
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Qingxuan Ji
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xi-Rui Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Jing-Yun Tian
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Kun-Xiu Jiang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xing-Zhuo Song
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Rui-Xin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jing Han
- Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Wei Wang
- College of Traditional Chinese, Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Brenner M, Messing A. Regulation of GFAP Expression. ASN Neuro 2021; 13:1759091420981206. [PMID: 33601918 PMCID: PMC7897836 DOI: 10.1177/1759091420981206] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of the GFAP gene has attracted considerable attention because its onset is a marker for astrocyte development, its upregulation is a marker for reactive gliosis, and its predominance in astrocytes provides a tool for their genetic manipulation. The literature on GFAP regulation is voluminous, as almost any perturbation of development or homeostasis in the CNS will lead to changes in its expression. In this review, we limit our discussion to mechanisms proposed to regulate GFAP synthesis through a direct interaction with its gene or mRNA. Strengths and weaknesses of the supportive experimental findings are described, and suggestions made for additional studies. This review covers 15 transcription factors, DNA and histone methylation, and microRNAs. The complexity involved in regulating the expression of this intermediate filament protein suggests that GFAP function may vary among both astrocyte subtypes and other GFAP-expressing cells, as well as during development and in response to perturbations.
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
3
|
Ohta M, Kihara T, Toriuchi K, Aoki H, Iwaki S, Kakita H, Yamada Y, Aoyama M. IL-6 promotes cell adhesion in human endothelial cells via microRNA-126-3p suppression. Exp Cell Res 2020; 393:112094. [PMID: 32439495 DOI: 10.1016/j.yexcr.2020.112094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/29/2022]
Abstract
Atherosclerosis is an important underlying cause of cardiovascular diseases; vascular endothelial cells play a vital role in inflammatory responses in the initial steps of atherosclerosis. High levels of the pro-inflammatory cytokine interleukin-6 (IL-6) long have been considered a risk factor in the development and complications of atherosclerotic disease. However, it is still controversial whether IL-6 is atherogenic or atheroprotective. Recently, miR-126-3p, an endothelial cell-specific microRNA, has been proposed as an atheroprotective molecule. Therefore, we investigated whether IL-6 accelerates endothelial cell responses through the suppression of miR-126-3p expression in human endothelial cell line EA.hy926. IL-6 yielded concentration-dependent decreases in miRNA-126-3p accumulation in EA.hy926 cells, leading in turn to increased expression of genes targeted by miRNA-126-3p. In addition, adhesion of the human monocyte cell line THP-1 was enhanced by the exposure of EA.hy926 cells to IL-6, with associated increases in the levels of the adhesion molecule intercellular adhesion molecule-1 (ICAM-1). Suppression of miR-126-3p expression resulted in upregulation of miRNA-126-3p-regulated genes, enhanced adhesion of THP-1 cells, and increased ICAM-1 accumulation in EA.hy926 cells. In contrast, miR-126-3p overproduction had the opposite effects. The regulation of miRNA-126-3p by IL-6 may have important implications for the development of novel protective therapies targeting atherosclerosis.
Collapse
Affiliation(s)
- Momoka Ohta
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Toshie Kihara
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Soichiro Iwaki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Hiroki Kakita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan; Department of Perinatal and Neonatal Medicine, Aichi Medical University, Nagakute, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, Nagakute, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan.
| |
Collapse
|
4
|
Wu R, Zhang PA, Liu X, Zhou Y, Xu M, Jiang X, Yan J, Xu GY. Decreased miR-325-5p Contributes to Visceral Hypersensitivity Through Post-transcriptional Upregulation of CCL2 in Rat Dorsal Root Ganglia. Neurosci Bull 2019; 35:791-801. [PMID: 30980241 DOI: 10.1007/s12264-019-00372-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic visceral hypersensitivity is an important type of chronic pain with unknown etiology and pathophysiology. Recent studies have shown that epigenetic regulation plays an important role in the development of chronic pain conditions. However, the role of miRNA-325-5p in chronic visceral pain remains unknown. The present study was designed to determine the roles and mechanism of miRNA-325-5p in a rat model of chronic visceral pain. This model was induced by neonatal colonic inflammation (NCI). In adulthood, NCI led to a significant reduction in the expression of miRNA-325-5p in colon-related dorsal root ganglia (DRGs), starting to decrease at the age of 4 weeks and being maintained to 8 weeks. Intrathecal administration of miRNA-325-5p agomir significantly enhanced the colorectal distention (CRD) threshold in a time-dependent manner. NCI also markedly increased the expression of CCL2 (C-C motif chemokine ligand 2) in colon-related DRGs at the mRNA and protein levels relative to age-matched control rats. The expression of CXCL12, IL33, SFRS7, and LGI1 was not significantly altered in NCI rats. CCL2 was co-expressed in NeuN-positive DRG neurons but not in glutamine synthetase-positive glial cells. Furthermore, CCL2 was mainly expressed in isolectin B4-binding- and calcitonin gene-related peptide-positive DRG neurons but in few NF-200-positive cells. More importantly, CCL2 was expressed in miR-325-5p-positive DRG neurons. Intrathecal injection of miRNA-325-5p agomir remarkably reduced the upregulation of CCL2 in NCI rats. Administration of Bindarit, an inhibitor of CCL2, markedly raised the CRD threshold in NCI rats in a dose- and time-dependent manner. These data suggest that NCI suppresses miRNA-325-5p expression and enhances CCL2 expression, thus contributing to visceral hypersensitivity in adult rats.
Collapse
Affiliation(s)
- Rui Wu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
- Department of Physiology and Neurobiology, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Ping-An Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
- Department of Physiology and Neurobiology, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xuelian Liu
- Department of Physiology and Neurobiology, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yuan Zhou
- Department of Physiology and Neurobiology, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Meijie Xu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Xinghong Jiang
- Department of Physiology and Neurobiology, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun Yan
- The Second Affiliated of Hospital Soochow University, Suzhou, 215004, China
| | - Guang-Yin Xu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, China.
- Department of Physiology and Neurobiology, Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Zainal Abidin S, Fam SZ, Chong CE, Abdullah S, Cheah PS, Nordin N, Ling KH. miR-3099 promotes neurogenesis and inhibits astrogliogenesis during murine neural development. Gene 2019; 697:201-212. [PMID: 30769142 DOI: 10.1016/j.gene.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022]
Abstract
MicroRNA-3099 is highly expressed during neuronal differentiation and development of the central nervous system. Here we characterised the role of miR-3099 during neural differentiation and embryonic brain development using a stable and regulatable mouse embryonic stem cell culture system for miR-3099 expression and in utero electroporation of miR-3099 expression construct into E15.5 embryonic mouse brains. In the in vitro system, miR-3099 overexpression upregulated gene related to neuronal markers such as Tuj1, NeuN, Gat1, vGluT1 and vGluT2. In contrast, gene related to astrocyte markers (Gfap, S100β and Slc1a3) were suppressed upon overexpression of miR-3099. Furthermore, miR-3099 overexpression between E15.5 and E18.5 mouse embryonic brains led to disorganised neuronal migration potentially due to significantly decreased Gfap+ cells. Collectively, our results indicated that miR-3099 plays a role in modulating and regulating expression of key markers involved in neuronal differentiation. In silico analysis was also performed to identify miR-3099 homologues in the human genome, and candidates were validated by stem-loop RT-qPCR. Analysis of the miR-3099 seed sequence AGGCUA against human transcriptomes revealed that a potential miRNA, mds21 (Chr21:39186698-39186677) (GenBank accession ID: MK521584), was 100% identical to the miR-3099 seed sequence. Mds21 expression was observed and validated in various human cell lines (293FT, human Wharton's jelly and dental pulp mesenchymal stem cells, and MCF-7, MDA-MB-231, C-Sert, SW780, RT112, 5637, EJ28 and SH-SY5Y cells), with the highest levels detected in human mesenchymal stem cell lines. The analysis validated mds21 as a novel miRNA and a novel homologue of miR-3099 in the human genome.
Collapse
Affiliation(s)
- Shahidee Zainal Abidin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sze-Zheng Fam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chan-Eng Chong
- Department of Genetics and Molecular Pathology, SA Pathology and University of South Australia Alliance, Adelaide, South Australia, Australia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Wang Q, Ai H, Liu J, Xu M, Zhou Z, Qian C, Xie Y, Yan J. Characterization of novel lnc RNAs in the spinal cord of rats with lumbar disc herniation. J Pain Res 2019; 12:501-512. [PMID: 30787629 PMCID: PMC6365226 DOI: 10.2147/jpr.s164604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Radicular pain, caused by a lesion or autologous nucleus pulposus (NP) implantation, is associated with alteration in gene expression of the pain-signaling pathways. lncRNAs have been shown to play critical roles in neuropathic pain. However, the mechanistic function of lncRNAs in lumbar disc herniation (LDH) remains largely unknown. Identifying different lncRNA expression under sham and NP-implantation conditions in the spinal cord is important for understanding the molecular mechanisms of radicular pain. Methods LDH was induced by implantation of autologous nucleus pulposus (NP), harvested from rat tail, in lumbar 5 and 6 spinal nerve roots. The mRNA and lncRNA microarray analyses demonstrated that the expression profiles of lncRNAs and mRNAs between the LDH and sham groups were markedly altered at 7 days post operation. The expression patterns of several mRNAs and lncRNAs were further proved by qPCR. Results LDH produced persistent mechanical and thermal hyperalgesia. A total of 19 lncRNAs was differentially expressed (>1.5-folds), of which 13 was upregulated and 6 was downregulated. In addition, a total of 103 mRNAs was markedly altered (>1.5-folds), of which 40 was upregulated and 63 downregulated. Biological analyses of these mRNAs further demonstrated that the most significantly upregulated genes in LDH included chemotaxis, immune response, and positive regulation of inflammatory responses, which might be important mechanisms underlying radicular neuropathic pain. These 19 differentially expressed lncRNAs have overlapping mRNAs in the genome, which are related to glutamatergic synapse, cytokine-cytokine receptor interaction, and the oxytocin-signalling pathway. Conclusion Our findings revealed the alteration of expression patterns of mRNAs and lncRNAs in the spinal cord of rats in a radicular pain model of LDH. These mRNAs and lncRNAs might be potential therapeutic targets for the treatment of radicular pain.
Collapse
Affiliation(s)
- Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Hongzhen Ai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Jinglin Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Min Xu
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Zhuang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Chen Qian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Ye Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| |
Collapse
|
7
|
Microcystin-LR-Triggered Neuronal Toxicity in Whitefish Does Not Involve MiR124-3p. Neurotox Res 2018; 35:29-40. [PMID: 29882005 PMCID: PMC6313356 DOI: 10.1007/s12640-018-9920-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin that has also been pointed out of causing neurotoxicity, but the exact mechanisms of action still remain ambiguous and need to be elucidated. Data from studies on mammals show that pathology of astrocyte cells points to perturbations of microRNA signaling. Glial fibrillary acidic protein (GFAP), a neuronal cell/astrocyte-specific protein, and a microRNA-124-3p (MiR124-3p) are among putative triggers and regulators of neuronal cell/astrocyte reactivity. In the present study on whitefish (Coregonus lavaretus), we found that gfap mRNA contains a putative target site for MIR124-3p, to potentially affect its expression changes. qPCR expression study of gfap:MiR124-3p pair in the midbrain of juvenile whitefish, during 28 days of exposure to a repeated subacute dose of MC-LR (100 μg kg−1 body mass), showed marginally significant up-regulation of gfap only on the 7th day of exposure period which suggests neuronal toxicity. During the whole exposure period, neither midbrain nor blood plasma levels of MiR124-3p were changed. Furthermore, double luciferase gene reporter assay confirmed the lack of MiR124-3p involvement in mediating control over gfap mRNA expression. These data show that, although MC-LR may trigger neuronal toxicity in whitefish, this does not involve MiR124-3p in response to the treatment.
Collapse
|
8
|
Liang Q, Lin J, Yang J, Li X, Chen Y, Meng X, Yuan J. Intervention Effect of Repetitive TMS on Behavioral Adjustment After Error Commission in Long-Term Methamphetamine Addicts: Evidence From a Two-Choice Oddball Task. Neurosci Bull 2018; 34:449-456. [PMID: 29340869 PMCID: PMC5960444 DOI: 10.1007/s12264-018-0205-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/27/2017] [Indexed: 01/09/2023] Open
Abstract
Behavioral adjustment plays an important role in the treatment and relapse of drug addiction. Nonetheless, few studies have examined behavioral adjustment and its plasticity following error commission in methamphetamine (METH) dependence, which is detrimental to human health. Thus, we investigated the behavioral adjustment performance following error commission in long-term METH addicts and how it varied with the application of repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC). Twenty-nine male long-term METH addicts (for > 3 years) were randomly assigned to high-frequency (10 Hz, n = 15) or sham (n = 14) rTMS of the left DLPFC during a two-choice oddball task. Twenty-six age-matched, healthy male adults participated in the two-choice oddball task pretest to establish normal performance for comparison. The results showed that 10 Hz rTMS over the left DLPFC significantly decreased the post-error slowing effect in response times of METH addicts. In addition, the 10 Hz rTMS intervention remarkably reduced the reaction times during post-error trials but not post-correct trials. While the 10 Hz rTMS group showed a more pronounced post-error slowing effect than the healthy participants during the pretest, the post-error slowing effect in the posttest of this sample was similar to that in the healthy participants. These results suggest that high-frequency rTMS over the left DLPFC is a useful protocol for the improvement of behavioral adjustment after error commission in long-term METH addicts.
Collapse
Affiliation(s)
- Qiongdan Liang
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jia Lin
- Da Lian Shan Institute of Addiction Rehabilitation, Nanjing, China
| | - Jiemin Yang
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiang Li
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | | | - Xianxin Meng
- School of Education, Nanyang Normal University, Nanyang, China
| | - Jiajin Yuan
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|