1
|
Hawly J, Murcar MG, Schcolnik-Cabrera A, Issa ME. Glioblastoma stem cell metabolism and immunity. Cancer Metastasis Rev 2024; 43:1015-1035. [PMID: 38530545 DOI: 10.1007/s10555-024-10183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Despite enormous efforts being invested in the development of novel therapies for brain malignancies, there remains a dire need for effective treatments, particularly for pediatric glioblastomas. Their poor prognosis has been attributed to the fact that conventional therapies target tumoral cells, but not glioblastoma stem cells (GSCs). GSCs are characterized by self-renewal, tumorigenicity, poor differentiation, and resistance to therapy. These characteristics represent the fundamental tools needed to recapitulate the tumor and result in a relapse. The mechanisms by which GSCs alter metabolic cues and escape elimination by immune cells are discussed in this article, along with potential strategies to harness effector immune cells against GSCs. As cellular immunotherapy is making significant advances in a variety of cancers, leveraging this underexplored reservoir may result in significant improvements in the treatment options for brain malignancies.
Collapse
Affiliation(s)
- Joseph Hawly
- Faculty of Medicine and Medical Sciences, University of Balamand, Dekouaneh, Lebanon
| | - Micaela G Murcar
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Mark E Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
2
|
Lindroth AM, Park YJ, Matía V, Squatrito M. The mechanistic GEMMs of oncogenic histones. Hum Mol Genet 2021; 29:R226-R235. [PMID: 32639003 DOI: 10.1093/hmg/ddaa143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022] Open
Abstract
The last decade's progress unraveling the mutational landscape of all age groups of cancer has uncovered mutations in histones as vital contributors of tumorigenesis. Here we review three new aspects of oncogenic histones: first, the identification of additional histone mutations potentially contributing to cancer formation; second, tumors expressing histone mutations to study the crosstalk of post-translational modifications, and; third, development of sophisticated biological model systems to reproduce tumorigenesis. At the outset, we recapitulate the firstly discovered histone mutations in pediatric and adolescent tumors of the brain and bone, which still remain the most pronounced histone alterations in cancer. We branch out to discuss the ramifications of histone mutations, including novel ones, that stem from altered protein-protein interactions of cognate histone modifiers as well as the stability of the nucleosome. We close by discussing animal models of oncogenic histones that reproduce tumor formation molecularly and morphologically and the prospect of utilizing them for drug testing, leading to efficient treatment and cure of deadly cancers with histone mutations.
Collapse
Affiliation(s)
- Anders M Lindroth
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Verónica Matía
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Center, CNIO, 28029 Madrid, Spain
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Center, CNIO, 28029 Madrid, Spain
| |
Collapse
|
3
|
Custers L, Paassen I, Drost J. In vitro Modeling of Embryonal Tumors. Front Cell Dev Biol 2021; 9:640633. [PMID: 33718380 PMCID: PMC7952537 DOI: 10.3389/fcell.2021.640633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/25/2021] [Indexed: 01/06/2023] Open
Abstract
A subset of pediatric tumors affects very young children and are thought to arise during fetal life. A common theme is that these embryonal tumors hijack developmental programs, causing a block in differentiation and, as a consequence, unrestricted proliferation. Embryonal tumors, therefore typically maintain an embryonic gene signature not found in their differentiated progeny. Still, the processes underpinning malignant transformation remain largely unknown, which is hampering therapeutic innovation. To gain more insight into these processes, in vitro and in vivo research models are indispensable. However, embryonic development is an extremely dynamic process with continuously changing cellular identities, making it challenging to define cells-of-origin. This is crucial for the development of representative models, as targeting the wrong cell or targeting a cell within an incorrect developmental time window can result in completely different phenotypes. Recent innovations in in vitro cell models may provide more versatile platforms to study embryonal tumors in a scalable manner. In this review, we outline different in vitro models that can be explored to study embryonal tumorigenesis and for therapy development.
Collapse
Affiliation(s)
- Lars Custers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
4
|
Valor LM, Hervás-Corpión I. The Epigenetics of Glioma Stem Cells: A Brief Overview. Front Oncol 2020; 10:602378. [PMID: 33344253 PMCID: PMC7738619 DOI: 10.3389/fonc.2020.602378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
Glioma stem cells (GSCs) are crucial in the formation, perpetuation and recurrence of glioblastomas (GBs) due to their self-renewal and proliferation properties. Although GSCs share cellular and molecular characteristics with neural stem cells (NSCs), GSCs show unique transcriptional and epigenetic features that may explain their relevant role in GB and may constitute druggable targets for novel therapeutic approaches. In this review, we will summarize the most important findings in GSCs concerning epigenetic-dependent mechanisms.
Collapse
Affiliation(s)
- Luis M Valor
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Irati Hervás-Corpión
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
5
|
Qiu T, Chanchotisatien A, Qin Z, Wu J, Du Z, Zhang X, Gong F, Yao Z, Chu S. Imaging characteristics of adult H3 K27M-mutant gliomas. J Neurosurg 2020; 133:1662-1670. [PMID: 31731269 DOI: 10.3171/2019.9.jns191920] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE H3 K27M-mutant gliomas present heterogeneously in terms of pathology, imaging, and prognosis. This study aimed to summarize the imaging characteristics of adult H3 K27M-mutant gliomas. METHODS The authors retrospectively identified all cases of glioma diagnosed using histopathological studies (n = 3300) that tested positive for histone H3 K27M mutations (n = 75) between January 2016 and December 2018 in a single hospital. Preoperative and follow-up MR images of 66 adult patients (age ≥ 18 years) were reviewed for anatomical location, degree of contrast enhancement, enhancement patterns, hemorrhage, edema, diffusion restriction, tumor dissemination, and tumor spread. RESULTS The study included 66 cases (40 in men, 26 in women) of H3 K27M-mutant glioma in adult patients. Tumors were found in the following sites: thalamus (n = 38), brainstem (n = 6), brainstem with cerebellar or thalamic involvement (n = 4), whole brain (n = 8), corpus callosum (n = 3), hypothalamus (n = 1), hemispheres (n = 2), and spinal cord (n = 4). All pure brainstem lesions were located posteriorly, and all corpus callosal lesions were in the genu. Most spinal tumors were long-segment lesions. Hemispheric lesions mimicked gliomatosis cerebri in presentation, with the addition of traditional midline structure involvement. Most tumors were solid with relatively uniform signals on plain MRI. Of the 61 cases with contrast-enhanced MR images, 36 (59%) showed partial to no enhancement, whereas 25 (41%) showed diffuse or irregular peripheral enhancement. Hemorrhage and edema were rare. Most lesions were solid and showed mild diffusion restriction on diffusion-weighted imaging. Tumor dissemination to the leptomeninges (n = 8) and subependymal layer (n = 3) was observed. CONCLUSIONS The authors described the MRI features of diffuse midline glioma with H3 K27M mutation in the largest study done to date in adult patients. Tumors were found in both midline and nonmidline structures, with the thalamus being the most common site. Although adult H3 K27M-mutant gliomas demonstrated highly variable presentations in this cohort of patients, the authors were able to observe shared characteristics within each location.
Collapse
Affiliation(s)
- Tianming Qiu
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University
| | | | - Zhiyong Qin
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University
| | - Jinsong Wu
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University
| | - Zunguo Du
- 3Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University
| | - Xialing Zhang
- 3Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University
| | - Fangyuan Gong
- 1Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University
| | - Zhenwei Yao
- 4Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University; and
| | - Shuguang Chu
- 5Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Graham MS, Mellinghoff IK. Histone-Mutant Glioma: Molecular Mechanisms, Preclinical Models, and Implications for Therapy. Int J Mol Sci 2020; 21:E7193. [PMID: 33003625 PMCID: PMC7582376 DOI: 10.3390/ijms21197193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Pediatric high-grade glioma (pHGG) is the leading cause of cancer death in children. Despite histologic similarities, it has recently become apparent that this disease is molecularly distinct from its adult counterpart. Specific hallmark oncogenic histone mutations within pediatric malignant gliomas divide these tumors into subgroups with different neuroanatomic and chronologic predilections. In this review, we will summarize the characteristic molecular alterations of pediatric high-grade gliomas, with a focus on how preclinical models of these alterations have furthered our understanding of their oncogenicity as well as their potential impact on developing targeted therapies for this devastating disease.
Collapse
Affiliation(s)
- Maya S. Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ingo K. Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Aziz-Bose R, Monje M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2020; 31:522-530. [PMID: 31464759 DOI: 10.1097/cco.0000000000000577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem malignancy. Despite advances in understanding of the molecular underpinnings of the tumor in the past decade, the dismal prognosis of DIPG has thus far remained unchanged. This review seeks to highlight promising therapeutic targets within three arenas: DIPG cell-intrinsic vulnerabilities, immunotherapeutic approaches to tumor clearance, and microenvironmental dependencies that promote tumor growth. RECENT FINDINGS Promising therapeutic strategies from recent studies include epigenetic modifying agents such as histone deacetylase inhibitors, bromodomain and extra-terminal motif (BET) protein inhibitors, and CDK7 inhibitors. Tumor-specific immunotherapies are emerging. Key interactions between DIPG and normal brain cells are coming to light, and targeting critical microenvironmental mechanisms driving DIPG growth in the developing childhood brain represents a new direction for therapy. SUMMARY Several DIPG treatment strategies are being evaluated in early clinical trials. Ultimately, we suspect that a multifaceted therapeutic approach utilizing cell-intrinsic, microenvironmental, and immunotherapeutic targets will be necessary for eradicating DIPG.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology and Neurological Sciences.,Stanford Institute for Stem Cell Biology and Regenerative Medicine.,Stanford Cancer Institute.,Department of Pediatrics.,Department of Psychiatry and Behavioral Sciences.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Mendez FM, Núñez FJ, Garcia-Fabiani MB, Haase S, Carney S, Gauss JC, Becher OJ, Lowenstein PR, Castro MG. Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro Oncol 2020; 22:195-206. [PMID: 32078691 PMCID: PMC7032633 DOI: 10.1093/neuonc/noz218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare but deadly pediatric brainstem tumor. To date, there is no effective therapy for DIPG. Transcriptomic analyses have revealed DIPGs have a distinct profile from other pediatric high-grade gliomas occurring in the cerebral hemispheres. These unique genomic characteristics coupled with the younger median age group suggest that DIPG has a developmental origin. The most frequent mutation in DIPG is a lysine to methionine (K27M) mutation that occurs on H3F3A and HIST1H3B/C, genes encoding histone variants. The K27M mutation disrupts methylation by polycomb repressive complex 2 on histone H3 at lysine 27, leading to global hypomethylation. Histone 3 lysine 27 trimethylation is an important developmental regulator controlling gene expression. This review discusses the developmental and epigenetic mechanisms driving disease progression in DIPG, as well as the profound therapeutic implications of epigenetic programming.
Collapse
Affiliation(s)
- Flor M Mendez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria B Garcia-Fabiani
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen Carney
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jessica C Gauss
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, Illinois
- Ann & Robert Lurie Children’s Hospital of Chicago, Division of Hematology-Oncology and Stem Cell Transplant, Chicago, Illinois
| | - Pedro R Lowenstein
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
9
|
Potent anti-tumor efficacy of palbociclib in treatment-naïve H3.3K27M-mutant diffuse intrinsic pontine glioma. EBioMedicine 2019; 43:171-179. [PMID: 31060906 PMCID: PMC6558223 DOI: 10.1016/j.ebiom.2019.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) is a rare and fatal pediatric brain cancer without cure. Seeking therapeutic strategies is still a major challenge in DIPG research. Previous study has shown that dysregulation of G1/S cell cycle checkpoint was common in DIPG and this dysregulation is even more enriched in the H3.3K27 M mutant subgroup. Here we assess potential anti-tumor efficacy of palbociclib, a specific and cytostatic inhibitor of CDK4/6, on high grade H3.3-K27 M-mutant DIPGs in vitro and in vivo. Methods We established patient-derived cell lines from treatment-naïve specimens. All the lines have H3.3K27 M mutation. We used a range of biological in vitro assays to assess the effect of palbociclib on growth of DIPGs. Palbociclib activity was also assayed in vivo against three independent DIPG orthotropic xenografts model. Findings Dysregulation of G1/S cell cycle checkpoint is enriched in these DIPGs. Then, we showed that depletion of CDK4 or CDK6 inhibits DIPG cells growth and blocks G1/S transition. Furthermore, palbociclib effectively repressed DIPG growth in vitro. Transcriptome analysis showed that palbociclib not only blocks G1/S transition, it also blocks other oncogenic targets such as MYC. Finally, palbociclib activity was assayed in vivo against DIPG orthotropic xenografts to demonstrate the high efficiency of blocking tumor growth. Interpretation Our findings thus revealed that palbociclib could be the therapeutic strategy for treatment-naïve DIPG with H3.3K27 M mutation. Fund Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support, Beijing Municipal Natural Science Foundation, Ministry of Science and Technology of China, and National Natural Science Foundation of China.
Collapse
|
10
|
Ma C, Bao AM, Yan XX, Swaab DF. Progress in Human Brain Banking in China. Neurosci Bull 2019; 35:179-182. [PMID: 30843142 PMCID: PMC6426891 DOI: 10.1007/s12264-019-00350-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Chao Ma
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center; Joint Laboratory of Anesthesia and Pain, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Ai-Min Bao
- Department of Neurobiology, and Department of Neurology of the Second Affiliated Hospital; Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013, China
| | - Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|