1
|
Zorumski CF, Covey DF, Izumi Y, Evers AS, Maguire JL, Mennerick SJ. New directions in neurosteroid therapeutics in neuropsychiatry. Neurosci Biobehav Rev 2025; 172:106119. [PMID: 40127877 DOI: 10.1016/j.neubiorev.2025.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
In recent years three neuroactive steroids (NAS), brexanolone (allopregnanolone, AlloP), ganaxolone and zuranolone, have been approved for the treatment of neuropsychiatric illnesses including postpartum depression and seizures in a neurodevelopmental syndrome. The approved agents are pregnane steroids and strong positive allosteric modulators (PAMs) of gamma-aminobutyric acid type A receptors (GABAARs). Broad effects on GABAARs play important roles in therapeutic benefits. However, these NAS also have actions on non-GABAR targets that could be important for clinical outcomes. Thus, understanding the broader effects of NAS is potentially important for expanding the therapeutic landscape of these important modulators. The approved NAS as well as other structurally distinct NAS and oxysterols have effects on non-GABAAR receptors and ion channels, along with intracellular actions that could have therapeutic importance, including modulation of cellular stress mechanisms, neuroinflammation, mitochondrial function and autophagy, among others. In this review, we explore GABAergic and other cellular effects of pregnane steroids including novel molecules that have potential therapeutic importance. This work discusses the complex chemical nature of NAS and what is being learned at cellular, molecular, synaptic and brain network levels about key sites of action including GABAARs and other targets.
Collapse
Affiliation(s)
- Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Douglas F Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex S Evers
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Steven J Mennerick
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Eskikurt G, Özerman Edis B, Dalanay AU, Özen I, Nurten A, Kara I, Karamürsel S. Long-term administration of paroxetine increases cortical EEG beta and gamma band activities in healthy awake rats. Pharmacol Biochem Behav 2024; 245:173896. [PMID: 39433160 DOI: 10.1016/j.pbb.2024.173896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Understanding the electrophysiological properties of antidepressant medications is important to resolve the response heterogeneity of these drugs in clinical practice. Administration of paroxetine, a selective serotonin reuptake inhibitor, has been shown to increase serotonin levels that affect cortical activities in healthy subjects. However, the extent to which cortical oscillations can be altered by ongoing administration of paroxetine is not known. Here, we develop EEG biomarkers showing long-term effects of paroxetine. EEG changes were analyzed using Neuroscan in healthy wakeful rats administered paroxetine (4 mg/kg/day) for six weeks. Subsequent EEG recordings taken at 3 and 6 weeks after treatment showed differences in cortical oscillations obtained from both hemispheres and frontal-central-parietal regions. Chronic paroxetine administration resulted in an increase in gamma band activity. Comparison of EEG frequency bands of paroxetine and saline groups showed an enhancement in higher frequency activities at third weeks after the treatment. Higher activity of alpha oscillations in the temporal cortex was persistent at sixth week of the administration. Overall, our results suggest that chronic paroxetine administration affects cortical oscillations across an expansive network.
Collapse
Affiliation(s)
- Gökçer Eskikurt
- Department of Psychology, Faculty of Humanities and Social Sciences, Istinye University, Istanbul, Turkey; Innovative Center of Applied Neurosciences, Istinye University, Istanbul, Turkey.
| | - Bilge Özerman Edis
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093 Çapa, Istanbul, Turkey.
| | - Ali Umut Dalanay
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilknur Özen
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey.
| | - Ihsan Kara
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, Koç Üniversitesi School of Medicine, Istanbul, Turkey.
| |
Collapse
|
3
|
Bianciardi B, Mastek H, Franka M, Uhlhaas PJ. Effects of N-Methyl-d-Aspartate Receptor Antagonists on Gamma-Band Activity During Auditory Stimulation Compared With Electro/Magneto-encephalographic Data in Schizophrenia and Early-Stage Psychosis: A Systematic Review and Perspective. Schizophr Bull 2024; 50:1104-1116. [PMID: 38934800 PMCID: PMC11349021 DOI: 10.1093/schbul/sbae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND HYPOTHESIS N-Methyl-d-aspartate receptor (NMDA-R) hypofunctioning has been hypothesized to be involved in circuit dysfunctions in schizophrenia (ScZ). Yet, it remains to be determined whether the physiological changes observed following NMDA-R antagonist administration are consistent with auditory gamma-band activity in ScZ which is dependent on NMDA-R activity. STUDY DESIGN This systematic review investigated the effects of NMDA-R antagonists on auditory gamma-band activity in preclinical (n = 15) and human (n = 3) studies and compared these data to electro/magneto-encephalographic measurements in ScZ patients (n = 37) and 9 studies in early-stage psychosis. The following gamma-band parameters were examined: (1) evoked spectral power, (2) intertrial phase coherence (ITPC), (3) induced spectral power, and (4) baseline power. STUDY RESULTS Animal and human pharmacological data reported a reduction, especially for evoked gamma-band power and ITPC, as well as an increase and biphasic effects of gamma-band activity following NMDA-R antagonist administration. In addition, NMDA-R antagonists increased baseline gamma-band activity in preclinical studies. Reductions in ITPC and evoked gamma-band power were broadly compatible with findings observed in ScZ and early-stage psychosis patients where the majority of studies observed decreased gamma-band spectral power and ITPC. In regard to baseline gamma-band power, there were inconsistent findings. Finally, a publication bias was observed in studies investigating auditory gamma-band activity in ScZ patients. CONCLUSIONS Our systematic review indicates that NMDA-R antagonists may partially recreate reductions in gamma-band spectral power and ITPC during auditory stimulation in ScZ. These findings are discussed in the context of current theories involving alteration in E/I balance and the role of NMDA hypofunction in the pathophysiology of ScZ.
Collapse
Affiliation(s)
- Bianca Bianciardi
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Helena Mastek
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michelle Franka
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Ruan X, Song Z, Yu T, Chen J. A voxel-level resting-state fMRI study on patients with alcohol use disorders based on a power spectrum slope analysis method. Front Neurosci 2024; 18:1323741. [PMID: 38426022 PMCID: PMC10902125 DOI: 10.3389/fnins.2024.1323741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Background Earlier neuroimaging investigations showed that abnormal brain activity in patients with alcohol use disorder (AUD) was frequency dependent. However, there is lacking of a comprehensive method to capture the amplitude of multi-frequency bands directly. Here, we used a new method, the power spectrum slope (PSS) to explore abnormal spontaneous activity of brain in patients with AUD. Methods Thirty-three AUD patients and 29 healthy controls (HCs) enrolled in this study. The coefficient b and the power-law slope b' were calculated and compared between two groups. We also used the receiver operating characteristic (ROC) curve to examine the ability of the PSS analysis to distinguish between AUD and HCs. We next examined the correlation between PSS difference in the brain areas and the severity of alcohol dependence. Results Thirty AUD patients and 26 HCs were retained after head motion correction. The two metrics of PSS values increased in the left precentral gyrus in AUD patients. The area under the curve values of PSS differences in the specific brain area were respectively 0.836 and 0.844, with sensitivities of 86.7% and 83.3% and specificities of 73.1% and 76.9%. The Michigan Alcoholism Screening Test (MAST) and Alcohol drinking scale (ADS) scores were not significantly correlated with the PSS values in the specific brain area. Conclusion As a novel method, the PSS can well detect abnormal local brain activity in the AUD patients and may offer new insights for future fMRI studies.
Collapse
Affiliation(s)
- Xia Ruan
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiyan Song
- Department of Radiology, Wuhan No. 1 Hospital, Wuhan, Hubei, China
| | - Tingting Yu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Tóth A, Sviatkó K, Détári L, Hajnik T. Ketamine affects homeostatic sleep regulation in the absence of the circadian sleep-regulating component in freely moving rats. Pharmacol Biochem Behav 2023; 225:173556. [PMID: 37087059 DOI: 10.1016/j.pbb.2023.173556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Pharmacological effects of ketamine may affect homeostatic sleep regulation via slow wave related mechanisms. In the present study effects of ketamine applied at anesthetic dose (80 mg/kg) were tested on neocortical electric activity for 24 h in freely moving rats. Ketamine effects were compared to changes during control (saline) injections and after 6 h gentle handling sleep deprivation (SD). As circadian factors may mask drug effects, an illumination protocol consisting of short light-dark cycles was applied. Ketamine application induced a short hypnotic stage with characteristic slow cortical rhythm followed by a long-lasting hyperactive waking resulting pharmacological SD. Coherence analysis indicated an increased level of local synchronization in broad local field potential frequency ranges during hyperactive waking but not during natural- or SD-evoked waking. Both slow wave sleep and rapid eye movement sleep were replaced after the termination of the ketamine effect. Our results show that both ketamine-induced hypnotic state and hyperactive waking can induce homeostatic sleep pressure with comparable intensity as 6 h SD, but ketamine-induced waking was different compared to the SD-evoked one. Both types of waking stages were different compared to spontaneous waking but all three types of wakefulness can engage the homeostatic sleep regulating machinery to generate sleep pressure dissipated by subsequent sleep. Current-source density analysis of the slow waves showed that cortical transmembrane currents were stronger during ketamine-induced hypnotic stage compared to both sleep replacement after SD and ketamine application, but intracortical activation patterns showed only quantitative differences. These findings may hold some translational value for human medical ketamine applications aiming the treatment of depression-associated sleep problems, which can be alleviated by the homeostatic sleep effect of the drug without the need for an intact circadian regulation.
Collapse
Affiliation(s)
- Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Hungary.
| | - Katalin Sviatkó
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Hungary
| |
Collapse
|
6
|
The effect of ketamine and D-cycloserine on the high frequency resting EEG spectrum in humans. Psychopharmacology (Berl) 2023; 240:59-75. [PMID: 36401646 PMCID: PMC9816261 DOI: 10.1007/s00213-022-06272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Preclinical studies indicate that high-frequency oscillations, above 100 Hz (HFO:100-170 Hz), are a potential translatable biomarker for pharmacological studies, with the rapid acting antidepressant ketamine increasing both gamma (40-100 Hz) and HFO. OBJECTIVES To assess the effect of the uncompetitive NMDA antagonist ketamine, and of D-cycloserine (DCS), which acts at the glycine site on NMDA receptors on HFO in humans. METHODS We carried out a partially double-blind, 4-way crossover study in 24 healthy male volunteers. Each participant received an oral tablet and an intravenous infusion on each of four study days. The oral treatment was either DCS (250 mg or 1000 mg) or placebo. The infusion contained 0.5 mg/kg ketamine or saline placebo. The four study conditions were therefore placebo-placebo, 250 mg DCS-placebo, 1000 mg DCS-placebo, or placebo-ketamine. RESULTS Compared with placebo, frontal midline HFO magnitude was increased by ketamine (p = 0.00014) and 1000 mg DCS (p = 0.013). Frontal gamma magnitude was also increased by both these treatments. However, at a midline parietal location, only HFO were increased by DCS, and not gamma, whilst ketamine increased both gamma and HFO at this location. Ketamine induced psychomimetic effects, as measured by the PSI scale, whereas DCS did not increase the total PSI score. The perceptual distortion subscale scores correlated with the posterior low gamma to frontal high beta ratio. CONCLUSIONS Our results suggest that, at high doses, a partial NMDA agonist (DCS) has similar effects on fast neural oscillations as an NMDA antagonist (ketamine). As HFO were induced without psychomimetic effects, they may prove a useful drug development target.
Collapse
|
7
|
Cui K, Yu Z, Xu L, Jiang W, Wang L, Wang X, Zou D, Gu J, Gao F, Zhang X, Wang Z. Behavioral features and disorganization of oscillatory activity in C57BL/6J mice after acute low dose MK-801 administration. Front Neurosci 2022; 16:1001869. [PMID: 36188453 PMCID: PMC9515662 DOI: 10.3389/fnins.2022.1001869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Low dose acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 is widely used to model cognition impairments associated with schizophrenia (CIAS) in rodents. However, due to no unified standards for animal strain, dose, route of drug delivery, and the duration of administration, how different doses of MK-801 influence behavior and fundamental frequency bands of the local field potential (LFP) in cortical and subcortical brain regions without consistent conclusions. The optimal dose of MK-801 as a valid cognition impairers to model CIAS in C57BL/6J mice remains unclear. The current study characterizes the behavior and neural oscillation alterations induced by different low doses of MK-801 in medial prefrontal cortex (mPFC) and hippocampus CA1 of C57BL/6J mice. The results reveal that mice treated with 0.1 and 0.3 mg/kg MK-801 demonstrate increased locomotion and diminished prepulse inhibition (PPI), while not when treated with 0.05 mg/kg MK-801. We also find that MK-801 dose as low as 0.05 mg/kg can significantly diminishes spontaneous alteration during the Y-maze test. Additionally, the oscillation power in delta, theta, alpha, gamma and HFO bands of the LFP in mPFC and CA1 was potentiated by different dose levels of MK-801 administration. The current findings revealed that the observed sensitivity against spontaneous alteration impairment and neural oscillation at 0.05 mg/kg MK-801 suggest that 0.05 mg/kg will produce changes in CIAS-relevant behavior without overt changes in locomotion and sensorimotor processing in C57BL/6J mice.
Collapse
Affiliation(s)
- Keke Cui
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo, China
| | - Zhipeng Yu
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Le Xu
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Wangcong Jiang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Luwan Wang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Xiangqun Wang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Dandan Zou
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Jiajie Gu
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Feng Gao
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Xiaoqing Zhang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo, China
| | - Zhengchun Wang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo, China
- *Correspondence: Zhengchun Wang,
| |
Collapse
|
8
|
Lambert PM, Lu X, Zorumski CF, Mennerick S. Physiological markers of rapid antidepressant effects of allopregnanolone. J Neuroendocrinol 2022; 34:e13023. [PMID: 34423498 PMCID: PMC8807818 DOI: 10.1111/jne.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023]
Abstract
The rise of ketamine and brexanolone as rapid antidepressant treatments raises the question of common mechanisms. Both drugs act without the long onset time of traditional antidepressants such as selective serotonin reuptake inhibitors. The drugs also share the interesting feature of benefit that persists beyond the initial drug lifetime. Here, we briefly review literature on functional changes that may mark the triggering mechanism of rapid antidepressant actions. Because ketamine has a longer history of study as a rapid antidepressant, we use this literature as a template to guide hypotheses about common action. Brexanolone has the complication of being a formulation of a naturally occurring neurosteroid; thus, endogenous levels need to be considered when studying the impact of exogenous administration. We conclude that network disinhibition and increased high-frequency oscillations are candidates to mediate acute triggering effects of rapid antidepressants.
Collapse
Affiliation(s)
- Peter M Lambert
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St Louis School of Medicine, St Louis, MO, USA
| |
Collapse
|
9
|
Qi R, Wang M, Zhong Q, Wang L, Yang X, Huang B, yang Z, Zhang C, Geng X, Luo C, Wang W, Li J, Yu H, Wei J. Chronic vagus nerve stimulation (VNS) altered IL-6, IL-1β, CXCL-1 and IL-13 levels in the hippocampus of rats with LiCl-pilocarpine-induced epilepsy. Brain Res 2022; 1780:147800. [DOI: 10.1016/j.brainres.2022.147800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/17/2023]
|
10
|
Li MT, Zhang SX, Li X, Antwi CO, Sun JW, Wang C, Sun XH, Jia XZ, Ren J. Amplitude of Low-Frequency Fluctuation in Multiple Frequency Bands in Tension-Type Headache Patients: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2021; 15:742973. [PMID: 34759792 PMCID: PMC8573136 DOI: 10.3389/fnins.2021.742973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Tension-type headache (TTH), the most prevalent primary headache disorder, imposes an enormous burden on the people of the world. The quest to ease suffering from this neurological disorder has sustained research interest. The present study aimed at evaluating the amplitude of low-frequency oscillations (LFOs) of the brain in multiple frequency bands in patients with TTH. Methods: To address this question, 63 participants were enrolled in the study, including 32 TTH patients and 31 healthy controls (HCs). For all the participants, amplitude of low-frequency fluctuation (ALFF) was measured in six frequency bands (conventional frequency bands, 0.01-0.08 Hz; slow-2, 0.198-0.25 Hz; slow-3, 0.073-0.198 Hz; slow-4, 0.027-0.073 Hz; slow-5, 0.01-0.027 Hz; and slow-6, 0-0.01 Hz), and the differences between TTH patients and HCs were examined. To explore the relationship between the altered ALFF brain regions in the six frequency bands and the Visual Analog Scale (VAS) score in the TTH patients, Pearson's correlation analysis was performed. Results: In all the six frequency bands, a decreased ALFF value was detected, and regions showing reduced ALFF values were mostly located in the middle frontal gyrus and superior gyrus. A frequency-dependent alternating characterization of intrinsic brain activity was found in the left caudate nucleus in the slow-2 band of 0.198-0.25 Hz and in the right inferior frontal orbital gyrus in the slow-5 band of 0.01-0.027 Hz. For the correlation results, both the left anterior cingulate and paracingulate gyri and right superior parietal gyrus showed a positive correlation with the VAS score in the slow-4 frequency band of 0.027-0.073 Hz. Conclusion: The ALFF alterations in the brain regions of TTH patients are involved in pain processing. The altered LFOs in the multiple regions may help promote the understanding of the pathophysiology of TTH. These observations could also allow the future treatment of TTH to be more directional and targeted and could promote the development of TTH treatment.
Collapse
Affiliation(s)
- Meng-Ting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, jinhua, China
| | - Shu-Xian Zhang
- Department of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xue Li
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Collins Opoku Antwi
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, jinhua, China
| | - Jia-Wei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Chao Wang
- Department of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xi-He Sun
- Department of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xi-Ze Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, jinhua, China
| | - Jun Ren
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, jinhua, China
| |
Collapse
|
11
|
Luan Y, Salvi R, Liu L, Lu C, Jiao Y, Tang T, Liu H, Teng GJ. High-frequency Noise-induced Hearing Loss Disrupts Functional Connectivity in Non-auditory Areas with Cognitive Disturbances. Neurosci Bull 2021; 37:720-724. [PMID: 33772721 DOI: 10.1007/s12264-021-00663-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/02/2020] [Indexed: 10/21/2022] Open
Affiliation(s)
- Ying Luan
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, 14214, USA
| | - Lijie Liu
- Department of Physiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Chunqiang Lu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Haiqing Liu
- Department of Physiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Deane KE, Brunk MGK, Curran AW, Zempeltzi MM, Ma J, Lin X, Abela F, Aksit S, Deliano M, Ohl FW, Happel MFK. Ketamine anaesthesia induces gain enhancement via recurrent excitation in granular input layers of the auditory cortex. J Physiol 2020; 598:2741-2755. [PMID: 32329905 DOI: 10.1113/jp279705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ketamine is a common anaesthetic agent used in research and more recently as medication in treatment of depression. It has known effects on inhibition of interneurons and cortical stimulus-locked responses, but the underlying functional network mechanisms are still elusive. Analysing population activity across all layers within the auditory cortex, we found that doses of this anaesthetic induce a stronger activation and stimulus-locked response to pure-tone stimuli. This cortical response is driven by gain enhancement of thalamocortical input processing selectively within granular layers due to an increased recurrent excitation. Time-frequency analysis indicates a higher broadband magnitude response and prolonged phase coherence in granular layers, possibly pointing to disinhibition of this recurrent excitation. These results further the understanding of ketamine's functional mechanisms, which will improve the ability to interpret physiological studies moving from anaesthetized to awake paradigms and may lead to the development of better ketamine-based depression treatments with lower side effects. ABSTRACT Ketamine is commonly used as an anaesthetic agent and has more recently gained attention as an antidepressant. It has been linked to increased stimulus-locked excitability, inhibition of interneurons and modulation of intrinsic neuronal oscillations. However, the functional network mechanisms are still elusive. A better understanding of these anaesthetic network effects may improve upon previous interpretations of seminal studies conducted under anaesthesia and have widespread relevance for neuroscience with awake and anaesthetized subjects as well as in medicine. Here, we investigated the effects of anaesthetic doses of ketamine (15 mg kg-1 h-1 i.p.) on the network activity after pure-tone stimulation within the auditory cortex of male Mongolian gerbils (Meriones unguiculatus). We used laminar current source density (CSD) analysis and subsequent layer-specific continuous wavelet analysis to investigate spatiotemporal response dynamics on cortical columnar processing in awake and ketamine-anaesthetized animals. We found thalamocortical input processing within granular layers III/IV to be significantly increased under ketamine. This layer-dependent gain enhancement under ketamine was not due to changes in cross-trial phase coherence but was rather attributed to a broadband increase in magnitude reflecting an increase in recurrent excitation. A time-frequency analysis was indicative of a prolonged period of stimulus-induced excitation possibly due to a reduced coupling of excitation and inhibition in granular input circuits - in line with the common hypothesis of cortical disinhibition via suppression of GABAergic interneurons.
Collapse
Affiliation(s)
- Katrina E Deane
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany
| | | | - Andrew W Curran
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany.,Graduate School of Life Science, Julius Maximilians University, Würzburg, D-97074, Germany
| | | | - Jing Ma
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany
| | - Xiao Lin
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany
| | - Francesca Abela
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany.,University of Pisa, Pisa, I-56126, Italy
| | - Sümeyra Aksit
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany
| | | | - Frank W Ohl
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, D-39120, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, 39106, Germany
| | - Max F K Happel
- Leibniz Institute for Neurobiology, Magdeburg, D-39118, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, D-39120, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, 39106, Germany
| |
Collapse
|
13
|
Li Y, Xie X, Xing H, Yuan X, Wang Y, Jin Y, Wang J, Vreugdenhil M, Zhao Y, Zhang R, Lu C. The Modulation of Gamma Oscillations by Methamphetamine in Rat Hippocampal Slices. Front Cell Neurosci 2019; 13:277. [PMID: 31281244 PMCID: PMC6598082 DOI: 10.3389/fncel.2019.00277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gamma frequency oscillations (γ, 30–100 Hz) have been suggested to underlie various cognitive and motor functions. The psychotomimetic drug methamphetamine (MA) enhances brain γ oscillations associated with changes in psychomotor state. Little is known about the cellular mechanisms of MA modulation on γ oscillations. We explored the effects of multiple intracellular kinases on MA modulation of γ induced by kainate in area CA3 of rat ventral hippocampal slices. We found that dopamine receptor type 1 and 2 (DR1 and DR2) antagonists, the serine/threonine kinase PKB/Akt inhibitor and N-methyl-D-aspartate receptor (NMDAR) antagonists prevented the enhancing effect of MA on γ oscillations, whereas none of them affected baseline γ strength. Protein kinase A, phosphoinositide 3-kinase and extracellular signal-related kinases inhibitors had no effect on MA. We propose that the DR1/DR2-Akt-NMDAR pathway plays a critical role for the MA enhancement of γ oscillations. Our study provides an new insight into the mechanisms of acute MA on MA-induced psychosis.
Collapse
Affiliation(s)
- Yanan Li
- The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Xin'e Xie
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Hang Xing
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiang Yuan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yuan Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Yikai Jin
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Jiangang Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- Department of Health Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Ying Zhao
- Key Laboratory of Clinical Psychopharmacology, School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ruiling Zhang
- The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Chengbiao Lu
- The Second Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Department of Physiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
14
|
Jia L, Sun Z, Shi D, Wang M, Jia J, He Y, Xue F, Ren Y, Yang J, Ma X. Effects of different patterns of electric stimulation of the ventromedial prefrontal cortex on hippocampal–prefrontal coherence in a rat model of depression. Behav Brain Res 2019; 356:179-188. [DOI: 10.1016/j.bbr.2018.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/16/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022]
|