1
|
Li W, Cao D, Li J, Jiang T. Face-Specific Activity in the Ventral Stream Visual Cortex Linked to Conscious Face Perception. Neurosci Bull 2024; 40:1434-1444. [PMID: 38457111 PMCID: PMC11422301 DOI: 10.1007/s12264-024-01185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/25/2023] [Indexed: 03/09/2024] Open
Abstract
When presented with visual stimuli of face images, the ventral stream visual cortex of the human brain exhibits face-specific activity that is modulated by the physical properties of the input images. However, it is still unclear whether this activity relates to conscious face perception. We explored this issue by using the human intracranial electroencephalography technique. Our results showed that face-specific activity in the ventral stream visual cortex was significantly higher when the subjects subjectively saw faces than when they did not, even when face stimuli were presented in both conditions. In addition, the face-specific neural activity exhibited a more reliable neural response and increased posterior-anterior direction information transfer in the "seen" condition than the "unseen" condition. Furthermore, the face-specific neural activity was significantly correlated with performance. These findings support the view that face-specific activity in the ventral stream visual cortex is linked to conscious face perception.
Collapse
Affiliation(s)
- Wenlu Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou, 311100, China.
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, 425000, China.
| |
Collapse
|
2
|
Tien M, Albonico A, Barton JJS. Faces, English words and Chinese characters: a study of dual-task interference in mono-and bilingual speakers. Exp Brain Res 2023; 241:1131-1144. [PMID: 36856801 PMCID: PMC9975443 DOI: 10.1007/s00221-023-06580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
The many-to-many hypothesis suggests that face and visual-word processing tasks share neural resources in the brain, even though they show opposing hemispheric asymmetries in neuroimaging and neuropsychologic studies. Recently it has been suggested that both stimulus and task effects need to be incorporated into the hypothesis. A recent study found dual-task interference between face and text functions that lateralized to the same hemisphere, but not when they lateralized to different hemispheres. However, it is not clear whether a lack of interference between word and face recognition would occur for other languages, particularly those with a morpho-syllabic script, like Chinese, for which there is some evidence of greater right hemispheric involvement. Here, we used the same technique to probe for dual-task interference between English text, Chinese characters and face recognition. We tested 20 subjects monolingual for English and 20 subjects bilingual for Chinese and English. We replicated the prior result for English text and showed similar results for Chinese text with no evidence of interference with faces. We also did not find interference between Chinese and English text. The results support a view in which reading English words, reading Chinese characters and face identification have minimal sharing of neural resources.
Collapse
Affiliation(s)
- Marko Tien
- grid.17091.3e0000 0001 2288 9830Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9 Canada
| | - Andrea Albonico
- grid.17091.3e0000 0001 2288 9830Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9 Canada
| | - Jason J. S. Barton
- grid.17091.3e0000 0001 2288 9830Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9 Canada
| |
Collapse
|
3
|
Zheng RZ, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci Bull 2023; 39:138-162. [PMID: 35804219 PMCID: PMC9849546 DOI: 10.1007/s12264-022-00909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Guo W, Geng S, Cao M, Feng J. The Brain Connectome for Chinese Reading. Neurosci Bull 2022; 38:1097-1113. [PMID: 35575936 PMCID: PMC9468198 DOI: 10.1007/s12264-022-00864-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/20/2022] [Indexed: 10/18/2022] Open
Abstract
Chinese, as a logographic language, fundamentally differs from alphabetic languages like English. Previous neuroimaging studies have mainly focused on alphabetic languages, while the exploration of Chinese reading is still an emerging and fast-growing research field. Recently, a growing number of neuroimaging studies have explored the neural circuit of Chinese reading. Here, we summarize previous research on Chinese reading from a connectomic perspective. Converging evidence indicates that the left middle frontal gyrus is a specialized hub region that connects the ventral with dorsal pathways for Chinese reading. Notably, the orthography-to-phonology and orthography-to-semantics mapping, mainly processed in the ventral pathway, are more specific during Chinese reading. Besides, in addition to the left-lateralized language-related regions, reading pathways in the right hemisphere also play an important role in Chinese reading. Throughout, we comprehensively review prior findings and emphasize several challenging issues to be explored in future work.
Collapse
Affiliation(s)
- Wanwan Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Shujie Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China.
| |
Collapse
|