1
|
Ran J, Dziedzic A, Naser IH, Itumalla R, Gupta JK, Rustagi S, Satapathy P, Khatib MN, Gaidhane S, Zahiruddin QS, Gaidhane AM, Sah R. Efficacy and safety of stem cell therapy in patients with dilated cardiomyopathy: an umbrella review of systematic reviews. Int J Surg 2024; 110:6222-6230. [PMID: 38320100 PMCID: PMC11487037 DOI: 10.1097/js9.0000000000001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Stem cell therapy (SCT) has emerged as a potential therapeutic avenue, with various cell types being explored for their efficacy in treating dilated cardiomyopathy (DCM). However, the safety and efficacy of these therapies have been the subject of numerous systematic reviews. This umbrella review aims to consolidate the existing evidence on stem cell interventions for DCM, providing a comprehensive overview of the current research landscape. METHODS This review was conducted following the JBI and PRISMA guidelines. Systematic reviews and meta-analyses of randomized controlled trials (RCTs) evaluating the safety and efficacy of SCT for DCM were included. Outcomes such as 6-minute walk test (6-MWT), left ventricular end-diastolic diameter (LVEDD), left ventricular ejection fraction (LVEF), major adverse cardiovascular events (MACE), New York Heart Association (NYHA), and quality of life (QoL), among others, were considered. A literature search was executed across databases like PubMed, Embase, Web of Science, and Cochrane Database up to 7 October 2023. The quality of the included reviews was assessed using the JBI Checklist for Systematic Reviews and Research Syntheses. Data synthesis was carried out in both narrative and tabular formats, with the GRADE criteria guiding the determination of evidence certainty. RESULTS Nine systematic reviews met the inclusion criteria. LVEF found to be significantly improved with SCT. LVEDD and LVEDV assessments yielded mixed results, with some reviews observing significant changes. Left ventricular end-systolic volume showed consistent reductions across multiple studies. B-type natriuretic peptide concentrations post-interventions were explored in several studies, with mixed findings. Health-related quality of life (HRQL) showed varied results, with some studies noting improvements and others finding no significant differences. NYHA classifications and 6-MWT results indicated potential benefits from stem cell treatments. SCT was observed to be generally safe. The certainty of evidence was low or very low for most of outcomes. CONCLUSION SCT showed has shown promise in treating DCM, with many studies highlighting its safety and potential benefits. Nonetheless, the existing data has its limitations due to biases in the RCTs studies. To truly establish the benefits of SCT for DCM, future high-quality RCTS, are crucial.
Collapse
Affiliation(s)
- Jun Ran
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, Katowice, Poland
| | - Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Ramaiah Itumalla
- School of Management, The Apollo University, Chittoor, Andhra Pradesh
| | | | | | - Prakasini Satapathy
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | | | - Shilpa Gaidhane
- One Health Centre (COHERD), Jawaharlal Nehru Medical College
| | - Quazi Syed Zahiruddin
- South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health. Datta Meghe Institute of Higher Education, Wardha
| | - Ranjit Sah
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Tribhuvan University Teaching Hospital, Kathmandu 46000, Nepal
| |
Collapse
|
2
|
Miloradovic D, Miloradovic D, Ljujic B, Jankovic MG. Optimal Delivery Route of Mesenchymal Stem Cells for Cardiac Repair: The Path to Good Clinical Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:83-100. [PMID: 35389200 DOI: 10.1007/5584_2022_709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Research has shown that mesenchymal stem cells (MSCs) could be a promising therapy for treating progressive heart disease. However, translation into clinics efficiently and successfully has proven to be much more complicated. Many questions remain for optimizing treatment. Application method influences destiny of MSCs and afterwards impacts results of procedure, yet there is no general agreement about most suitable method of MSC delivery in the clinical setting. Herein, we explain principle of most-frequent MSCs delivery techniques in cardiology. This chapter summarizes crucial translational obstacles of clinical employment of MSCs for cardiac repair when analysed trough a prism of latest research centred on different techniques of MSCs application.
Collapse
Affiliation(s)
- Dragica Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW This review presents the current state of imaging approaches that enable real-time molecular imaging in the interventional suite and discusses the potential future use of integrated nuclear imaging and fluoroscopy for intraprocedural guidance in the evaluation and treatment of both cardiovascular and oncological diseases. RECENT FINDINGS Although there are no commercially available real-time hybrid nuclear imaging devices that are approved for use in the interventional suite, prototype open gantry hybrid nuclear imaging and x-ray c-arm imaging systems and theranostic catheter for location radiotracer detection are currently undergoing development and testing by multiple groups. The integration of physiological and molecular targeted nuclear imaging for real-time delivery of targeted theranostics in the interventional laboratory may enable more personalized care for a wide variety of cardiovascular procedures and improve patient outcomes.
Collapse
|
4
|
Diaz-Navarro R, Urrútia G, Cleland JG, Poloni D, Villagran F, Acosta-Dighero R, Bangdiwala SI, Rada G, Madrid E. Stem cell therapy for dilated cardiomyopathy. Cochrane Database Syst Rev 2021; 7:CD013433. [PMID: 34286511 PMCID: PMC8406792 DOI: 10.1002/14651858.cd013433.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stem cell therapy (SCT) has been proposed as an alternative treatment for dilated cardiomyopathy (DCM), nonetheless its effectiveness remains debatable. OBJECTIVES To assess the effectiveness and safety of SCT in adults with non-ischaemic DCM. SEARCH METHODS We searched CENTRAL in the Cochrane Library, MEDLINE, and Embase for relevant trials in November 2020. We also searched two clinical trials registers in May 2020. SELECTION CRITERIA Eligible studies were randomized controlled trials (RCT) comparing stem/progenitor cells with no cells in adults with non-ischaemic DCM. We included co-interventions such as the administration of stem cell mobilizing agents. Studies were classified and analysed into three categories according to the comparison intervention, which consisted of no intervention/placebo, cell mobilization with cytokines, or a different mode of SCT. The first two comparisons (no cells in the control group) served to assess the efficacy of SCT while the third (different mode of SCT) served to complement the review with information about safety and other information of potential utility for a better understanding of the effects of SCT. DATA COLLECTION AND ANALYSIS Two review authors independently screened all references for eligibility, assessed trial quality, and extracted data. We undertook a quantitative evaluation of data using random-effects meta-analyses. We evaluated heterogeneity using the I² statistic. We could not explore potential effect modifiers through subgroup analyses as they were deemed uninformative due to the scarce number of trials available. We assessed the certainty of the evidence using the GRADE approach. We created summary of findings tables using GRADEpro GDT. We focused our summary of findings on all-cause mortality, safety, health-related quality of life (HRQoL), performance status, and major adverse cardiovascular events. MAIN RESULTS We included 13 RCTs involving 762 participants (452 cell therapy and 310 controls). Only one study was at low risk of bias in all domains. There were many shortcomings in the publications that did not allow a precise assessment of the risk of bias in many domains. Due to the nature of the intervention, the main source of potential bias was lack of blinding of participants (performance bias). Frequently, the format of the continuous data available was not ideal for use in the meta-analysis and forced us to seek strategies for transforming data in a usable format. We are uncertain whether SCT reduces all-cause mortality in people with DCM compared to no intervention/placebo (mean follow-up 12 months) (risk ratio (RR) 0.84, 95% confidence interval (CI) 0.54 to 1.31; I² = 0%; studies = 7, participants = 361; very low-certainty evidence). We are uncertain whether SCT increases the risk of procedural complications associated with cells injection in people with DCM (data could not be pooled; studies = 7; participants = 361; very low-certainty evidence). We are uncertain whether SCT improves HRQoL (standardized mean difference (SMD) 0.62, 95% CI 0.01 to 1.23; I² = 72%; studies = 5, participants = 272; very low-certainty evidence) and functional capacity (6-minute walk test) (mean difference (MD) 70.12 m, 95% CI -5.28 to 145.51; I² = 87%; studies = 5, participants = 230; very low-certainty evidence). SCT may result in a slight functional class (New York Heart Association) improvement (data could not be pooled; studies = 6, participants = 398; low-certainty evidence). None of the included studies reported major adverse cardiovascular events as defined in our protocol. SCT may not increase the risk of ventricular arrhythmia (data could not be pooled; studies = 8, participants = 504; low-certainty evidence). When comparing SCT to cell mobilization with granulocyte-colony stimulating factor (G-CSF), we are uncertain whether SCT reduces all-cause mortality (RR 0.46, 95% CI 0.16 to 1.31; I² = 39%; studies = 3, participants = 195; very low-certainty evidence). We are uncertain whether SCT increases the risk of procedural complications associated with cells injection (studies = 1, participants = 60; very low-certainty evidence). SCT may not improve HRQoL (MD 4.61 points, 95% CI -5.62 to 14.83; studies = 1, participants = 22; low-certainty evidence). SCT may improve functional capacity (6-minute walk test) (MD 140.14 m, 95% CI 119.51 to 160.77; I² = 0%; studies = 2, participants = 155; low-certainty evidence). None of the included studies reported MACE as defined in our protocol or ventricular arrhythmia. The most commonly reported outcomes across studies were based on physiological measures of cardiac function where there were some beneficial effects suggesting potential benefits of SCT in people with non-ischaemic DCM. However, it is unclear if this intermediate effects translates into clinical benefits for these patients. With regard to specific aspects related to the modality of cell therapy and its delivery, uncertainties remain as subgroup analyses could not be performed as planned, making it necessary to wait for the publication of several studies that are currently in progress before any firm conclusion can be reached. AUTHORS' CONCLUSIONS We are uncertain whether SCT in people with DCM reduces the risk of all-cause mortality and procedural complications, improves HRQoL, and performance status (exercise capacity). SCT may improve functional class (NYHA), compared to usual care (no cells). Similarly, when compared to G-CSF, we are also uncertain whether SCT in people with DCM reduces the risk of all-cause mortality although some studies within this comparison observed a favourable effect that should be interpreted with caution. SCT may not improve HRQoL but may improve to some extent performance status (exercise capacity). Very low-quality evidence reflects uncertainty regarding procedural complications. These suggested beneficial effects of SCT, although uncertain due to the very low certainty of the evidence, are accompanied by favourable effects on some physiological measures of cardiac function. Presently, the most effective mode of administration of SCT and the population that could benefit the most is unclear. Therefore, it seems reasonable that use of SCT in people with DCM is limited to clinical research settings. Results of ongoing studies are likely to modify these conclusions.
Collapse
Affiliation(s)
- Rienzi Diaz-Navarro
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - John Gf Cleland
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Poloni
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Francisco Villagran
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Roberto Acosta-Dighero
- Cochrane Chile Associate Centre, Universidad de Valparaíso, Valparaíso, Chile
- School of Physiotherapy, Faculty of Health Sciences, Universidad San Sebastian, Santiago, Chile
| | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Gabriel Rada
- Department of Internal Medicine and Evidence-Based Healthcare Program, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eva Madrid
- Interdisciplinary Centre for Health Studies CIESAL, Universidad de Valparaíso, Viña del Mar, Chile
- Cochrane Chile Associate Centre, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
5
|
Li K, Vela D, Migliati E, da Graca Cabreira M, Wang X, Buja LM, Perin EC. Pilot Study of Endovascular Delivery of Mesenchymal Stromal Cells in the Aortic Wall in a Pig Model. Cell Transplant 2021; 30:9636897211010652. [PMID: 33938770 PMCID: PMC8114770 DOI: 10.1177/09636897211010652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) have a high mortality. In small-animal models, multipotent mesenchymal stromal cells (MSCs) have shown benefits in attenuating aneurysm formation. However, an optimal cell delivery strategy is lacking. The NOGA system, which targets cell injections in a less-invasive way, has been used for myocardial cell delivery. Here, we assessed the safety and feasibility of the NOGA system for endovascular delivery of MSCs to the aortic wall in an AAA pig model. We induced AAA in 9 pigs by surgery or catheter induction. MSCs were delivered using the NOGA system 6 or 8 weeks after aneurysm induction. We euthanized the pigs and harvested the aorta for histologic analysis 1, 3, and 7 days after cell delivery. During AAA creation, 1 pig died; 8 pigs completed the study without acute adverse events or complications. The cell delivery procedure was safe and feasible. We successfully injected MSCs directly into the aortic wall in a targeted manner. Histologic and immunohistochemical analyses confirmed transmural injections in the aortic wall area of interest and the presence of MSCs. Our study showed the safety and feasibility of endovascular cell delivery to the aortic wall in a pig model.
Collapse
Affiliation(s)
- Ke Li
- Stem Cell Center, 14644Texas Heart Institute, Houston, Texas, USA
| | - Deborah Vela
- Cardiovascular Pathology, 14644Texas Heart Institute, Houston, Texas, USA
| | - Elton Migliati
- Stem Cell Center, 14644Texas Heart Institute, Houston, Texas, USA
| | | | - Xiaohong Wang
- Stem Cell Center, 14644Texas Heart Institute, Houston, Texas, USA
| | - L Maximilian Buja
- Cardiovascular Pathology, 14644Texas Heart Institute, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Emerson C Perin
- Stem Cell Center, 14644Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
6
|
Raval AN, Pepine CJ. Clinical Safety Profile of Transendocardial Catheter Injection Systems: A Plea for Uniform Reporting. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2020; 22:100-108. [PMID: 32651159 DOI: 10.1016/j.carrev.2020.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to characterize the clinical safety profile of transendocardial injection catheters (TIC) reported in the published literature. BACKGROUND Transendocardial delivery is a minimally invasive approach to deliver potential therapeutic agents directly into the myocardium. The rate of adverse events across TIC is uncertain. METHODS A systematic search was performed for trial publications using TIC. Procedure-associated adverse event data were abstracted, pooled and compared across catheters for active treatment and placebo injected patients. The transendocardial injection associated serious adverse events (TEI-SAE) was defined as the composite of death, myocardial infarction, stroke or transient ischemic attack within 30 days and cardiac perforation causing death or requiring evacuation, serious intraprocedural arrhythmias and serious coronary artery or peripheral vascular complications. RESULTS The search identified 4 TIC systems: a helical needle (HN), an electro-anatomically tracked straight needle (EAM-SN), a straight needle without tracking elements (SN), and a curved needle (CN). Of 1799 patients who underwent transendocardial injections, the combined TEI-SAE was 3.4% across all catheters, and 1.1%, 3.3%, 7.1%, and 8.3% for HN, EAM-SN, SN and CN, respectively. However, TIC procedure duration and post procedural cardiac biomarker levels were reported in only 24% and 36% of published trials, respectively. CONCLUSIONS Transendocardial injection is associated with varied TEI-SAE but the data are very limited. The HN catheter appeared to be associated with lower TEI-SAE, versus other catheters. Procedure duration and post procedure cardiac biomarker levels were under-reported. Clearly, standardized, procedure-related event reporting for trials involving transcatheter delivery would improve our understanding of complications across different systems.
Collapse
Affiliation(s)
- Amish N Raval
- Department of Medicine and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainsville, FL, USA
| |
Collapse
|
7
|
van den Broek HT, Wenker S, van de Leur R, Doevendans PA, Chamuleau SAJ, van Slochteren FJ, van Es R. 3D Myocardial Scar Prediction Model Derived from Multimodality Analysis of Electromechanical Mapping and Magnetic Resonance Imaging. J Cardiovasc Transl Res 2019; 12:517-527. [PMID: 31338795 PMCID: PMC6854049 DOI: 10.1007/s12265-019-09899-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/01/2019] [Indexed: 01/27/2023]
Abstract
Many cardiac catheter interventions require accurate discrimination between healthy and infarcted myocardia. The gold standard for infarct imaging is late gadolinium-enhanced MRI (LGE-MRI), but during cardiac procedures electroanatomical or electromechanical mapping (EAM or EMM, respectively) is usually employed. We aimed to improve the ability of EMM to identify myocardial infarction by combining multiple EMM parameters in a statistical model. From a porcine infarction model, 3D electromechanical maps were 3D registered to LGE-MRI. A multivariable mixed-effects logistic regression model was fitted to predict the presence of infarct based on EMM parameters. Furthermore, we correlated feature-tracking strain parameters to EMM measures of local mechanical deformation. We registered 787 EMM points from 13 animals to the corresponding MRI locations. The mean registration error was 2.5 ± 1.16 mm. Our model showed a strong ability to predict the presence of infarction (C-statistic = 0.85). Strain parameters were only weakly correlated to EMM measures. The model is accurate in discriminating infarcted from healthy myocardium. Unipolar and bipolar voltages were the strongest predictors.
Collapse
Affiliation(s)
| | - Steven Wenker
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger van de Leur
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- CMH, Utrecht, Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | - René van Es
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Diaz-Navarro R, Urrútia G, Cleland JGF, Poloni D, Villagran F, Bangdiwala S, Rada G, Madrid E. Stem cell therapy for dilated cardiomyopathy. Hippokratia 2019. [DOI: 10.1002/14651858.cd013433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rienzi Diaz-Navarro
- Universidad de Valparaiso; Department of Internal Medicine, School of Medicine; Vina del Mar Chile
| | - Gerard Urrútia
- CIBER Epidemiología y Salud Pública (CIBERESP); Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau); Sant Antoni Maria Claret, 167 Pavilion 18 (D-53) Barcelona Catalonia Spain 08025
| | - John GF Cleland
- Imperial College London; National Heart and Lung Institute; London UK
| | - Daniel Poloni
- Universidad de Valparaiso; Department of Internal Medicine, School of Medicine; Vina del Mar Chile
| | - Francisco Villagran
- Universidad de Valparaiso; Department of Internal Medicine, School of Medicine; Vina del Mar Chile
| | - Shrikant Bangdiwala
- Collaborative Studies Coordinating Center; Department of Biostatistics, Gillings School of Global Public Health; Suite 203, Bank of America Center 137 E. Franklin Street Chapel Hill North Carolina USA 27514-4145
| | - Gabriel Rada
- Pontificia Universidad Católica de Chile; Department of Internal Medicine and Evidence-Based Healthcare Program, Faculty of Medicine; Lira 44, Decanato Primer piso Santiago Chile
| | - Eva Madrid
- Cochrane Centre School of Medicine Universidad de Valparaiso; Interdisciplinary Centre for Health Studies CIESAL; Viña del Mar Chile
- Universidad de Valparaiso; Chilean Cochrane Centre; Valparaiso Chile
| |
Collapse
|
9
|
Haider KH, Aziz S, Al-Reshidi MA. Endothelial progenitor cells for cellular angiogenesis and repair: lessons learned from experimental animal models. Regen Med 2017; 12:969-982. [PMID: 29215316 DOI: 10.2217/rme-2017-0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem/progenitor cell-based therapy has been extensively studied for angiomyogenic repair of the ischemic heart by regeneration of the damaged myocytes and neovascularization of the ischemic tissue through biological bypassing. Given their inherent ability to assume functionally competent endothelial phenotype and release of broad array of proangiogenic cytokines, endothelial progenitor cells (EPCs)-based therapy is deemed as most appropriate for vaculogenesis in the ischemic heart. Emulating the natural repair process that encompasses mobilization and homing-in of the bone marrow and peripheral blood EPCs, their reparability has been extensively studied in the animal models of myocardial ischemia with encouraging results. Our literature review is a compilation of the lessons learned from the use of EPCs in experimental animal models with emphasis on the in vitro manipulation and delivery strategies to enhance their retention, survival and functioning post-engraftment in the heart.
Collapse
Affiliation(s)
| | - Salim Aziz
- Department of CV Surgery, George Washington University, 2440 M Street NW, Suite 505, Washington DC 20037, USA
| | - Mateq Ali Al-Reshidi
- Department of Basic Sciences, Sulaiman Al Rajhi Colleges, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Psaltis PJ, Schwarz N, Toledo-Flores D, Nicholls SJ. Cellular Therapy for Heart Failure. Curr Cardiol Rev 2016; 12:195-215. [PMID: 27280304 PMCID: PMC5011188 DOI: 10.2174/1573403x12666160606121858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/31/1969] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management.
Collapse
Affiliation(s)
- Peter J Psaltis
- Co-Director of Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia 5000.
| | | | | | | |
Collapse
|
11
|
Jokerst JV, Chen Z, Xu L, Nolley R, Chang E, Mitchell B, Brooks JD, Gambhir SS. A Magnetic Bead-Based Sensor for the Quantification of Multiple Prostate Cancer Biomarkers. PLoS One 2015; 10:e0139484. [PMID: 26421725 PMCID: PMC4589536 DOI: 10.1371/journal.pone.0139484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/13/2015] [Indexed: 12/20/2022] Open
Abstract
Novel biomarker assays and upgraded analytical tools are urgently needed to accurately discriminate benign prostatic hypertrophy (BPH) from prostate cancer (CaP). To address this unmet clinical need, we report a piezeoelectric/magnetic bead-based assay to quantitate prostate specific antigen (PSA; free and total), prostatic acid phosphatase, carbonic anhydrase 1 (CA1), osteonectin, IL-6 soluble receptor (IL-6sr), and spondin-2. We used the sensor to measure these seven proteins in serum samples from 120 benign prostate hypertrophy patients and 100 Gleason score 6 and 7 CaP using serum samples previously collected and banked. The results were analyzed with receiver operator characteristic curve analysis. There were significant differences between BPH and CaP patients in the PSA, CA1, and spondin-2 assays. The highest AUC discrimination was achieved with a spondin-2 OR free/total PSA operation—the area under the curve was 0.84 with a p value below 10−6. Some of these data seem to contradict previous reports and highlight the importance of sample selection and proper assay building in the development of biomarker measurement schemes. This bead-based system offers important advantages in assay building including low cost, high throughput, and rapid identification of an optimal matched antibody pair.
Collapse
Affiliation(s)
- Jesse V. Jokerst
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, United States of America
| | - Zuxiong Chen
- Department of Urology, Stanford University, Stanford, California, United States of America
| | - Lingyun Xu
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, United States of America
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, California, United States of America
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, United States of America
| | - Breeana Mitchell
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, United States of America
| | - James D. Brooks
- Department of Urology, Stanford University, Stanford, California, United States of America
- * E-mail: (JDB); (SSG)
| | - Sanjiv S. Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, United States of America
- Bioengineering, Materials Science & Engineering, Bio-X, Stanford University, Stanford, California, United States of America
- * E-mail: (JDB); (SSG)
| |
Collapse
|
12
|
Intramyocardial Autologous Bone Marrow-derived Stem Cells Injection for Ischemic Heart Disease Ineligible for Revascularization: A Systematic Review and Meta-analysis. Arch Med Res 2015; 46:286-95. [PMID: 26070842 DOI: 10.1016/j.arcmed.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 06/01/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS Intramyocardial autologous bone marrow-derived stem cells injection (IM-BMCs) has been used in patients with ischemic heart disease (IHD) who are ineligible for revascularization; however, the procedure has yielded mixed results. The objective of this meta-analysis was to evaluate the safety and therapeutic benefits of this treatment on a relatively large scale. METHODS PubMed, EMBASE, and Cochrane Library databases through September 2014 were searched for randomized clinical trials (RCTs) of IM-BMCs to treat IHD. Outcome measures were defined as mortality after treatment, change in left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV) and left ventricular end-diastolic volume (LVEDV). Weighted mean differences for the changes were estimated with a random-effects model. RESULTS Nine RCTs were eligible for inclusion. IM-BMCs significantly reduced the risk of mortality (RR, 0.33; 95% CI, 0.17-0.65; p = 0.001). IM-BMCs significantly improved LVEF by 2.57% (95% CI, 0.34-4.80%; p = 0.02) and reduced LVESV by 9.67 mL (95% CI, -16.43 mL to -2.91 mL; p = 0.005). No significant improvement in LVEDV (WMD = 4.73 mL; 95% CI, -7.22 mL to 16.68 mL; p = 0.44) was detected in patients who received IM-BMC therapy. CONCLUSIONS IM-BMC therapy showed clinical safety while being used as stand-alone treatment in IHD with no option of revascularization. The therapeutic efficacy requires further confirmation in large well-powered trials with long-term follow-up.
Collapse
|
13
|
Abstract
Well into the second decade since its conception, cell transplantation continues to undergo intensive evaluation for the treatment of myocardial infarction. At a mechanistic level, its objectives remain to replace lost cardiac cell mass with new functioning cardiomyocytes and vascular cells, thereby minimizing infarct size and scar formation, and improving clinical outcomes by preventing adverse left ventricular remodeling and recurrent ischemic events. Many different cell types, including pluripotent stem cells and various adult-derived progenitor cells, have been shown to have therapeutic potential in preclinical studies, while early phase human trial experience has provided divergent outcomes and fundamental lessons, emphasizing that there remain key issues to address and challenges to overcome before cell therapy can be applied to wider clinical practice. The purpose of this review is to provide a balanced update on recent seminal developments in this exciting field and look to the next important steps to ensure its forward progression.
Collapse
|
14
|
Xia Y, Zhu K, Lai H, Lang M, Xiao Y, Lian S, Guo C, Wang C. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation. Exp Biol Med (Maywood) 2014; 240:593-600. [PMID: 25432986 DOI: 10.1177/1535370214560957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/03/2014] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation.
Collapse
Affiliation(s)
- Yu Xia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China Department of Cardio-Thoracic Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, P. R. China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Sheng Lian
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changfa Guo
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China
| |
Collapse
|
15
|
|
16
|
Richardson JD, Nelson AJ, Zannettino ACW, Gronthos S, Worthley SG, Psaltis PJ. Optimization of the cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Rev Rep 2014; 9:281-302. [PMID: 22529015 DOI: 10.1007/s12015-012-9366-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite current treatment options, cardiac failure is associated with significant morbidity and mortality highlighting a compelling clinical need for novel therapeutic approaches. Based on promising pre-clinical data, stem cell therapy has been suggested as a possible therapeutic strategy. Of the candidate cell types evaluated, mesenchymal stromal/stem cells (MSCs) have been widely evaluated due to their ease of isolation and ex vivo expansion, potential allogeneic utility and capacity to promote neo-angiogenesis and endogenous cardiac repair. However, the clinical application of MSCs for mainstream cardiovascular use is currently hindered by several important limitations, including suboptimal retention and engraftment and restricted capacity for bona fide cardiomyocyte regeneration. Consequently, this has prompted intense efforts to advance the therapeutic properties of MSCs for cardiovascular disease. In this review, we consider the scope of benefit from traditional plastic adherence-isolated MSCs and the lessons learned from their conventional use in preclinical and clinical studies. Focus is then given to the evolving strategies aimed at optimizing MSC therapy, including discussion of cell-targeted techniques that encompass the preparation, pre-conditioning and manipulation of these cells ex vivo, methods to improve their delivery to the heart and innovative substrate-directed strategies to support their interaction with the host myocardium.
Collapse
Affiliation(s)
- James D Richardson
- Cardiovascular Research Centre, Royal Adelaide Hospital and Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 2013; 61:2329-38. [PMID: 23583246 DOI: 10.1016/j.jacc.2013.02.071] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study sought to evaluate the feasibility and safety of autologous bone marrow-derived and cardiogenically oriented mesenchymal stem cell therapy and to probe for signs of efficacy in patients with chronic heart failure. BACKGROUND In pre-clinical heart failure models, cardiopoietic stem cell therapy improves left ventricular function and blunts pathological remodeling. METHODS The C-CURE (Cardiopoietic stem Cell therapy in heart failURE) trial, a prospective, multicenter, randomized trial, was conducted in patients with heart failure of ischemic origin who received standard of care or standard of care plus lineage-specified stem cells. In the cell therapy arm, bone marrow was harvested and isolated mesenchymal stem cells were exposed to a cardiogenic cocktail. Derived cardiopoietic stem cells, meeting release criteria under Good Manufacturing Practice, were delivered by endomyocardial injections guided by left ventricular electromechanical mapping. Data acquisition and analysis were performed in blinded fashion. The primary endpoint was feasibility/safety at 2-year follow-up. Secondary endpoints included cardiac structure/function and measures of global clinical performance 6 months post-therapy. RESULTS Mesenchymal stem cell cocktail-based priming was achieved for each patient with the dose attained in 75% and delivery without complications in 100% of cases. There was no evidence of increased cardiac or systemic toxicity induced by cardiopoietic cell therapy. Left ventricular ejection fraction was improved by cell therapy (from 27.5 ± 1.0% to 34.5 ± 1.1%) versus standard of care alone (from 27.8 ± 2.0% to 28.0 ± 1.8%, p < 0.0001) and was associated with a reduction in left ventricular end-systolic volume (-24.8 ± 3.0 ml vs. -8.8 ± 3.9 ml, p < 0.001). Cell therapy also improved the 6-min walk distance (+62 ± 18 m vs. -15 ± 20 m, p < 0.01) and provided a superior composite clinical score encompassing cardiac parameters in tandem with New York Heart Association functional class, quality of life, physical performance, hospitalization, and event-free survival. CONCLUSIONS The C-CURE trial implements the paradigm of lineage guidance in cell therapy. Cardiopoietic stem cell therapy was found feasible and safe with signs of benefit in chronic heart failure, meriting definitive clinical evaluation. (C-Cure Clinical Trial; NCT00810238).
Collapse
Affiliation(s)
- Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hinkel R, Boekstegers P, Kupatt C. Adjuvant early and late cardioprotective therapy: access to the heart. Cardiovasc Res 2012; 94:226-36. [PMID: 22318936 DOI: 10.1093/cvr/cvs075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Coronary heart disease is still the leading cause of death in industrialized nations, occurring either as acute coronary occlusion and myocardial infarction or as chronic ischaemic cardiomyopathy caused by continuous obstruction of one or more coronary arteries. Even after successful reperfusion, an additional loss of otherwise vital cardiomyocytes may occur in the primary ischaemic area, called lethal reperfusion injury. In experimental settings, delivery of therapeutic agents targeting the reperfusion injury reduces the infarct size by 30%. In addition to the choice of therapeutic agent and time point, the mode of application may be crucial for the therapeutic success. Therefore, this review focuses on the current and future administration techniques for early and late post-myocardial infarction therapies.
Collapse
Affiliation(s)
- Rabea Hinkel
- Medizinische Klinik und Poliklinik I, Klinikum der LMU München, Marchioninistraße 15, Munich, Germany.
| | | | | |
Collapse
|
19
|
Abstract
Noninvasive or minimally invasive imaging techniques are essential for developing strategies and assessing outcomes of cell-based therapies for myocardial regeneration, also referred to as cellular cardiomyoplasty. Imaging-based monitoring of cell survival is useful for selection of optimal cell type and evaluating strategies to enhance engraftment. Imaging-derived surrogate end points including global and regional contractile function, myocardial blood flow, or perfusion and bioenergetics have been used in clinical trials or in relevant large animal models to evaluate the therapeutic effect and mechanisms of action of cellular cardiomyoplasty. New techniques are emerging to assess electrical integration of donor cells with host cardiomyocytes. This review will summarize and highlight important and informative findings revealed by imaging in clinical and preclinical cellular cardiomyoplasty studies over the past 3 years.
Collapse
|
20
|
Psaltis PJ, Simari RD, Rodriguez-Porcel M. Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. Eur J Nucl Med Mol Imaging 2011; 39:165-81. [PMID: 21901381 DOI: 10.1007/s00259-011-1925-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 12/20/2022]
Abstract
Despite preclinical promise, the progress of cell-based therapy to clinical cardiovascular practice has been slowed by several challenges and uncertainties that have been highlighted by the conflicting results of human trials. Most telling has been the revelation that current strategies fall short of achieving sufficient retention and engraftment of cells to meet the ambitious objective of myocardial regeneration. This has sparked novel research into the refinement of cell biology and delivery to overcome these shortcomings. Within this context, molecular imaging has emerged as a valuable tool for providing noninvasive surveillance of cell fate in vivo. Direct and indirect labelling of cells can be coupled with clinically relevant imaging modalities, such as radionuclide single photon emission computed tomography and positron emission tomography, and magnetic resonance imaging, to assess their short- and long-term distributions, along with their viability, proliferation and functional interaction with the host myocardium. This review details the strengths and limitations of the different cell labelling and imaging techniques and their potential application to the clinical realm. We also consider the broader, multifaceted utility of imaging throughout the cell therapy process, providing a discussion of its considerable value during cell delivery and its importance during the evaluation of cardiac outcomes in clinical studies.
Collapse
Affiliation(s)
- Peter J Psaltis
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
21
|
Kedziorek DA, Kraitchman DL. Emerging Approaches for Cardiovascular Stem Cell Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010. [DOI: 10.1007/s12410-010-9057-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|