1
|
SDF-1α-Releasing Microspheres Effectively Extend Stem Cell Homing after Myocardial Infarction. Biomedicines 2023; 11:biomedicines11020343. [PMID: 36830880 PMCID: PMC9953248 DOI: 10.3390/biomedicines11020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Ischemic heart disease (IHD) is one of the main focuses in today's healthcare due to its implications and complications, and it is predicted to be increasing in prevalence due to the ageing population. Although the conventional pharmacological and interventional methods for the treatment of IHD presents with success in the clinical setting, the long-term complications of cardiac insufficiency are on a continual incline as a result of post-infarction remodeling of the cardiac tissue. The migration and involvement of stem cells to the cardiac muscle, followed by differentiation into cardiac myocytes, has been proven to be the natural process, though at a slow rate. SDF-1α is a novel candidate to mobilize stem cells homing to the ischemic heart. Endogenous SDF-1α levels are elevated after myocardial infarction, but their presence gradually decreases after approximately seven days. Additional administration of SDF-1α-releasing microspheres could be a tool for the extension of the time the stem cells are in the cardiac tissue after myocardial infarction. This, in turn, could constitute a novel therapy for more efficient regeneration of the heart muscle after injury. Through this practical study, it has been shown that the controlled release of SDF-1α from biodegradable microspheres into the pericardial sac fourteen days after myocardial infarction increases the concentration of exogenous SDF-1α, which persists in the tissue much longer than the level of endogenous SDF-1α. In addition, administration of SDF-1α-releasing microspheres increased the expression of the factors potentially involved in the involvement and retention of myocardial stem cells, which constitutes vascular endothelial growth factor A (VEGFA), stem cell factor (SCF), and vascular cell adhesion molecules (VCAMs) at the site of damaged tissue. This exhibits the possibility of combating the basic limitations of cell therapy, including ineffective stem cell implantation and the ability to induce the migration of endogenous stem cells to the ischemic cardiac tissue and promote heart repair.
Collapse
|
2
|
Ghanbari MA, Lashkar Bolouki T, Norouzi P, Bitaraf FS, Bakhshi H, Atashi A. Down-Regulation of CXCR4 in Mesenchymal Stem Cells by Septic Serum. Indian J Hematol Blood Transfus 2022; 38:718-725. [PMID: 36258736 PMCID: PMC9569406 DOI: 10.1007/s12288-022-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background Sepsis is one of the main concerns of health and one of the leading causes of death in hospitals. It is essential to manage sepsis in hospitalized patients. In recent years, cell therapy has been considered as a new approach to treat sepsis. This study evaluated the effect of CXCR4 as one of the main proteins involved in the homing of mesenchymal stem cells in the sepsis serum in mice model. Methods Mouse sepsis model was induced by injection of E.coli and biochemical analyses was done to confirm the organ failure. Mesenchymal stem cells (MSCs) derived from bone marrow were separated into sepsis and control groups. In the sepsis serum group, MSCs were treated with sepsis serum at two time points: 24 and 48 h. Quantitative RT-PCR and flow cytometry were performed to determine the mRNA expression of CXCR4 in sepsis serum group compared to control group. Also, a migration assay was done to assess the migration capacity of bone marrow MSCs during inflammation and treatment in sepsis. Results Our result showed that treatment with sepsis serum can control migration by decrease in CXCR4 level (P ≤ 0.05) compared to control group. Moreover it was also reported that sepsis serum decreased mRNA expression of CXCR4 in MScs. Conclusions In our study, MSCs treated with septic serum were no longer able to migrate . Probably many variables such as source, dose, injection time, and injection route of MSCs after sepsis induction in the animal models are key factors for successful cell therapy.
Collapse
Affiliation(s)
| | | | - Pirasteh Norouzi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Haniye Bakhshi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
3
|
Xiu G, Li X, Yin Y, Li J, Li B, Chen X, Liu P, Sun J, Ling B. SDF-1/CXCR4 Augments the Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells in the Treatment of Lipopolysaccharide-Induced Liver Injury by Promoting Their Migration Through PI3K/Akt Signaling Pathway. Cell Transplant 2021; 29:963689720929992. [PMID: 32452221 PMCID: PMC7563832 DOI: 10.1177/0963689720929992] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are thought to have great potential in the therapy of acute liver injury. It is possible that these cells may be regulated by the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling axis, which has been shown to promote stem cells migration in the inflammation-associated diseases. However, the effects of SDF-1/CXCR4 axis on the MSCs-transplantation-based treatment for acute liver injury and the underlying mechanisms are largely unknown. In this study, we sought to determine whether SDF-1/CXCR4 would augment the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs) by promoting their migration, which may result from activating the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, in a rat acute liver injury model induced by lipopolysaccharide (LPS). We found that BMSCs transplantation markedly attenuated liver injury and improved the survival of LPS-treated rats. Of interest, overexpression of CXCR4 in BMSCs could substantially promote their migration both in vitro and in vivo, and result in even better therapeutic effects. This might be attributed to the activation of PI3K/Akt signaling pathway in BMSCs that is downstream of CXCR4, as demonstrated by the use of the CXCR4 antagonist AMD3100 and PI3K pathway inhibitor LY294002 assays in vitro and in vivo. Together, our results unraveled a novel molecular mechanism for the therapeutic effect of BMSCs for the treatment of acute liver injury, which may shed a new light on the clinical application of BMSCs for acute liver failure.
Collapse
Affiliation(s)
- Guanghui Xiu
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China.,These authors contributed equally to this article
| | - Xiuling Li
- Department of Obstetrics, The First People's Hospital of Yunnan province, Kunming, Yunnan Province, China.,These authors contributed equally to this article
| | - Yunyu Yin
- Department of Intensive Care Unit, The Affiliated hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China.,These authors contributed equally to this article
| | - Jintao Li
- The Institute of Neuroscience, The Kunming Medical University, Kunming, Yunnan Province, China
| | - Bingqin Li
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Xianzhong Chen
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Ping Liu
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Jie Sun
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Bin Ling
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| |
Collapse
|
4
|
Kim JY, Lee DH, Kim JK, Choi HS, Dwivedi B, Rupji M, Kowalski J, Green SJ, Song H, Park WJ, Chang JY, Kim TM, Park C. ETV2/ER71 regulates the generation of FLK1 + cells from mouse embryonic stem cells through miR-126-MAPK signaling. Stem Cell Res Ther 2019; 10:328. [PMID: 31744543 PMCID: PMC6862833 DOI: 10.1186/s13287-019-1466-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 11/10/2022] Open
Abstract
Previous studies including ours have demonstrated a critical function of the transcription factor ETV2 (ets variant 2; also known as ER71) in determining the fate of cardiovascular lineage development. However, the underlying mechanisms of ETV2 function remain largely unknown. In this study, we demonstrated the novel function of the miR (micro RNA)-126-MAPK (mitogen-activated protein kinase) pathway in ETV2-mediated FLK1 (fetal liver kinase 1; also known as VEGFR2)+ cell generation from the mouse embryonic stem cells (mESCs). By performing a series of experiments including miRNA sequencing and ChIP (chromatin immunoprecipitation)-PCR, we found that miR-126 is directly induced by ETV2. Further, we identified that miR-126 can positively regulate the generation of FLK1+ cells by activating the MAPK pathway through targeting SPRED1 (sprouty-related EVH1 domain containing 1). Further, we showed evidence that JUN/FOS activate the enhancer region of FLK1 through AP1 (activator protein 1) binding sequences. Our findings provide insight into the novel molecular mechanisms of ETV2 function in regulating cardiovascular lineage development from mESCs.
Collapse
Affiliation(s)
- Ju Young Kim
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA.,Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA
| | - Dong Hun Lee
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Joo Kyung Kim
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA
| | - Hong Seo Choi
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.,Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA.,Present Address: Department of Oncology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Stefan J Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Heesang Song
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA.,Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, IL, Republic of Korea
| | - Won Jong Park
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA
| | - Ji Young Chang
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA
| | - Tae Min Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr. Atlanta, Atlanta, GA, 30322, USA. .,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, USA. .,Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA. .,Biochemistry, Cell Biology and Developmental Biology Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Ceholski DK, Turnbull IC, Pothula V, Lecce L, Jarrah AA, Kho C, Lee A, Hadri L, Costa KD, Hajjar RJ, Tarzami ST. CXCR4 and CXCR7 play distinct roles in cardiac lineage specification and pharmacologic β-adrenergic response. Stem Cell Res 2017; 23:77-86. [PMID: 28711757 PMCID: PMC5859259 DOI: 10.1016/j.scr.2017.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 06/09/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022] Open
Abstract
CXCR4 and CXCR7 are prominent G protein-coupled receptors (GPCRs) for chemokine stromal cell-derived factor-1 (SDF-1/CXCL12). This study demonstrates that CXCR4 and CXCR7 induce differential effects during cardiac lineage differentiation and β-adrenergic response in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using lentiviral vectors to ablate CXCR4 and/or CXCR7 expression, hiPSC-CMs were tested for phenotypic and functional properties due to gene knockdown. Gene expression and flow cytometry confirmed the pluripotent and cardiomyocyte phenotype of undifferentiated and differentiated hiPSCs, respectively. Although reduction of CXCR4 and CXCR7 expression resulted in a delayed cardiac phenotype, only knockdown of CXCR4 delayed the spontaneous beating of hiPSC-CMs. Knockdown of CXCR4 and CXCR7 differentially altered calcium transients and β-adrenergic response in hiPSC-CMs. In engineered cardiac tissues, depletion of CXCR4 or CXCR7 had opposing effects on developed force and chronotropic response to β-agonists. This work demonstrates distinct roles for the SDF-1/CXCR4 or CXCR7 network in hiPSC-derived ventricular cardiomyocyte specification, maturation and function.
Collapse
Affiliation(s)
- Delaine K Ceholski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venu Pothula
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Lecce
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew A Jarrah
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ahyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sima T Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
6
|
Abstract
BACKGROUND Healing of an anal sphincter defect at a time distant from injury is a challenge. OBJECTIVE We aimed to investigate whether re-establishing stem cell homing at the site of an anal sphincter defect when cytokine expression has declined using a plasmid engineered to express stromal derived factor 1 with or without mesenchymal stem cells can improve anatomic and functional outcome. DESIGN This was a randomized animal study. SETTINGS Thirty-two female age- and weight-matched Sprague Dawley rats underwent 50% excision of the anal sphincter complex. Three weeks after injury, 4 interventions were randomly allocated (n = 8), including no intervention, 100-μg plasmid, plasmid and 800,000 cells, and plasmid with a gelatin scaffold mixed with cells. MAIN OUTCOME MEASURES The differences in anal sphincter resting pressures just before and 4 weeks after intervention were used for functional analysis. Histology was analyzed using Masson staining. One-way ANOVA followed by the Tukey post hoc test was used for pressure and histological analysis. RESULTS All 3 of the intervention groups had a significantly greater change in resting pressure (plasmid p = 0.009; plasmid + cells p = 0.047; plasmid + cells in scaffold p = 0.009) compared with the control group. The plasmid-with-cells group showed increased organization of muscle architecture and increased muscle percentage, whereas the control group showed disorganized architecture at the site of the defect. Histological quantification revealed significantly more muscle at the site of defect in the plasmid-plus-cells group compared with the control group, which had the least muscle. Quantification of connective tissue revealed significantly less fibrosis at the site of defect in the plasmid and plasmid-plus-cells groups compared with the control group. LIMITATIONS Midterm evaluation and muscle morphology were not defined. CONCLUSIONS At this midterm follow-up, local delivery of a stromal derived factor 1 plasmid with or without local mesenchymal stem cells enhanced anal sphincter muscle regeneration long after an anal sphincter injury, thereby improving functional outcome. See Video Abstract at http://links.lww.com/DCR/A324.
Collapse
|
7
|
Zhong J, Rajagopalan S. Dipeptidyl Peptidase-4 Regulation of SDF-1/CXCR4 Axis: Implications for Cardiovascular Disease. Front Immunol 2015; 6:477. [PMID: 26441982 PMCID: PMC4585326 DOI: 10.3389/fimmu.2015.00477] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed protease that regulates diverse number of physiological functions. As a dipeptidase, it exerts its catalytic effects on proteins/peptides with proline, alanine, or serine in the penultimate (P1) amino acid residue from the amino terminus. The evidence to date supports an important effect of DPP4 in catalytic cleavage of incretin peptides and this perhaps represents the main mechanism by which DPP4 inhibition improves glycemic control. DPP4 also plays an important role in the degradation of multiple chemokines of which stromal cell-derived factor-1 (SDF-1, also known as CXCL12) is perhaps an increasingly recognized target, given its importance in processes, such as hematopoiesis, angiogenesis, and stem cell homing. In the current review, we will summarize the importance of DPP4-mediated enzymatic processing of cytokines/chemokines with an emphasis on SDF-1 and resultant implications for cardiovascular physiology and disease.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| |
Collapse
|
8
|
Alexander JM, Hota SK, He D, Thomas S, Ho L, Pennacchio LA, Bruneau BG. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 2015; 142:1418-30. [PMID: 25813539 PMCID: PMC4392595 DOI: 10.1242/dev.109496] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/27/2015] [Indexed: 12/28/2022]
Abstract
The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also required to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. These findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions. SUMMARY: The chromatin remodeling factor Brg1 is essential for mesoderm induction and, by modulating active and repressive chromatin states, is involved in promoting the activation of dynamic enhancers.
Collapse
Affiliation(s)
- Jeffrey M Alexander
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Swetansu K Hota
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Daniel He
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Sean Thomas
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Lena Ho
- Institute of Medical Biology, A*STAR, Singapore 138648
| | - Len A Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA United States Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA Department of Pediatrics, University of California, San Francisco, CA 94143, USA Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Di Scipio F, Sprio A, Folino A, Carere M, Salamone P, Yang Z, Berrone M, Prat M, Losano G, Rastaldo R, Berta G. Injured cardiomyocytes promote dental pulp mesenchymal stem cell homing. Biochim Biophys Acta Gen Subj 2014; 1840:2152-61. [DOI: 10.1016/j.bbagen.2014.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 02/07/2023]
|
10
|
Suresh R, Chiriac A, Goel K, Villarraga HR, Lopez-Jimenez F, Thomas RJ, Terzic A, Nelson TJ, Perez-Terzic C. CXCR4+ and FLK-1+ identify circulating cells associated with improved cardiac function in patients following myocardial infarction. J Cardiovasc Transl Res 2013; 6:787-97. [PMID: 23934537 DOI: 10.1007/s12265-013-9502-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/09/2013] [Indexed: 12/13/2022]
Abstract
The biomarkers CXCR4/FLK-1 select cardiac progenitors from a stem cell pool in experimental models. However, the translational value of these cells in human ischemic heart disease is unknown. Here, flow-cytometry identified CD45(-)/CXCR4(+)/FLK-1(+) cells in 30 individuals without ischemic heart disease and 33 first-time acute myocardial infarction (AMI) patients. AMI patients had higher CD45(-)/CXCR4(+)/FLK-1(+) cell-load at 48-h and 3- and 6-months post-AMI (p = 0.003,0.04,0.04, respectively) than controls. Cardiovascular risk factors and left ventricular (LV) ejection fraction were not associated with cell-load. 2D-speckle-tracking strain echocardiography assessment of LV systolic function showed improvement in longitudinal strain and dyssynchrony during follow-up associated with longitudinal increases in and higher 48-h post-AMI CD45(-)/CXCR4(+)/FLK-1(+) cell-load (r = -0.525, p = 0.025; r = -0.457, p = 0.029, respectively). In conclusion, CD45(-)/CXCR4(+)/FLK-1(+) cells are present in adult human circulation, increased in AMI and associated with improved LV systolic function. Thus, CD45(-)/CXCR4(+)/FLK-1(+) cells may provide a diagnostic tool to follow cardiac regenerative capacity and potentially serve as a prognostic marker in AMI.
Collapse
Affiliation(s)
- Rahul Suresh
- Mayo Medical School, College of Medicine, Rochester, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Penn MS, Mendelsohn FO, Schaer GL, Sherman W, Farr M, Pastore J, Rouy D, Clemens R, Aras R, Losordo DW. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circ Res 2013; 112:816-25. [PMID: 23429605 DOI: 10.1161/circresaha.111.300440] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE Preclinical studies indicate that adult stem cells induce tissue repair by activating endogenous stem cells through the stromal cell-derived factor-1:chemokine receptor type 4 axis. JVS-100 is a DNA plasmid encoding human stromal cell-derived factor-1. OBJECTIVE We tested in a phase 1, open-label, dose-escalation study with 12 months of follow-up in subjects with ischemic cardiomyopathy to see if JVS-100 improves clinical parameters. METHODS AND RESULTS Seventeen subjects with ischemic cardiomyopathy, New York Heart Association class III heart failure, with an ejection fraction ≤40% on stable medical therapy, were enrolled to receive 5, 15, or 30 mg of JVS-100 via endomyocardial injection. The primary end points for safety and efficacy were at 1 and 4 months, respectively. The primary safety end point was a major adverse cardiac event. Efficacy end points were change in quality of life, New York Heart Association class, 6-minute walk distance, single photon emission computed tomography, N-terminal pro-brain natruretic peptide, and echocardiography at 4 and 12 months. The primary safety end point was met. At 4 months, all of the cohorts demonstrated improvements in 6-minute walk distance, quality of life, and New York Heart Association class. Subjects in the 15- and 30-mg dose groups exhibited improvements in 6-minute walk distance (15 mg: median [range]: 41 minutes [3-61 minutes]; 30 mg: 31 minutes [22-74 minutes]) and quality of life (15 mg: -16 points [+1 to -32 points]; 30 mg: -24 points [+17 to -38 points]) over baseline. At 12 months, improvements in symptoms were maintained. CONCLUSIONS These data highlight the importance of defining the molecular mechanisms of stem cell-based tissue repair and suggest that overexpression of stromal cell-derived factor-1 via gene therapy is a strategy for improving heart failure symptoms in patients with ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Marc S Penn
- Summa Cardiovascular Institute, Summa Health System, Skirball Laboratory for Cardiovascular Cellular Therapeutics, Department of Integrative Medical Sciences, Northeast Ohio Medical University, Akron, OH 44304, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zelarayán LC, Zafiriou MP, Zimmermann WH. Emerging Concepts in Myocardial Pharmacoregeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
Zhu DY, Zhou LM, Zhang YY, Huang JQ, Pan X, Lou YJ. Involvement of Metabotropic Glutamate Receptor 5 in Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells. Stem Cells Dev 2012; 21:2130-41. [DOI: 10.1089/scd.2011.0584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dan-Yan Zhu
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Li-Min Zhou
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Ying-Ying Zhang
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | - Jia-Qi Huang
- Research Training Project, Zhejiang University, Hangzhou, China
| | - Xing Pan
- Research Training Project, Zhejiang University, Hangzhou, China
| | - Yi-Jia Lou
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Blazeski A, Zhu R, Hunter DW, Weinberg SH, Boheler KR, Zambidis ET, Tung L. Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:178-95. [PMID: 22958937 DOI: 10.1016/j.pbiomolbio.2012.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/23/2022]
Abstract
Human embryonic stem cells have emerged as the prototypical source from which cardiomyocytes can be derived for use in drug discovery and cell therapy. However, such applications require that these cardiomyocytes (hESC-CMs) faithfully recapitulate the physiology of adult cells, especially in relation to their electrophysiological and contractile function. We review what is known about the electrophysiology of hESC-CMs in terms of beating rate, action potential characteristics, ionic currents, and cellular coupling as well as their contractility in terms of calcium cycling and contraction. We also discuss the heterogeneity in cellular phenotypes that arises from variability in cardiac differentiation, maturation, and culture conditions, and summarize present strategies that have been implemented to reduce this heterogeneity. Finally, we present original electrophysiological data from optical maps of hESC-CM clusters.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kearns-Jonker M, Dai W, Gunthart M, Fuentes T, Yeh HY, Gerczuk P, Pera M, Mummery C, Kloner RA. Genetically Engineered Mesenchymal Stem Cells Influence Gene Expression in Donor Cardiomyocytes and the Recipient Heart. ACTA ACUST UNITED AC 2012; S1. [PMID: 23125947 DOI: 10.4172/2157-7633.s1-005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIMS: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) or mesenchymal stem cells (MSCs) facilitate post-infarct recovery, but the potential benefit of combination therapy using MSCs and hESC-CMs has not been examined. Our objective was to define the gene expression changes in donor and host-derived cells that are induced in vivo after co-transplantation of cardiomyocytes with and without mesenchymal stem cells expressing the prosurvival gene heme oxygenase 1. METHODS AND RESULTS: Human MSCs were engineered to over-express heme oxygenase-1 (HO-1) following lentiviral vector-mediated transduction. Athymic nude rats were subjected to myocardial infarction and received hESC-CMs alone, hESC-CMs plus human MSCs, hESC-CMs plus MSCs overexpressing HO-1, or saline. Real time PCR identified gene expression changes. Cardiac function was assessed by angiography. Co-transplantation of unmodified MSCs plus hESC-CMs elevated CXCR4, HGF, and IGF expression over levels induced by injection of hESC-derived cardiomyocytes alone. In animals co-transplanted with MSC over-expressing HO-1, the expression of these genes was further elevated. Gene expression levels of VEGF, TGF-β, CCL2, SMAD7, STAT3 and cardiomyocyte transcription factors were highest in the HO-1 MSC plus hESC-CM group at 30 days. Human CD31+, CD34+, isl-1+, NXK2.5 and c-kit+ transcripts were elevated. Rodent genes encoding NKX2.5, troponin T and CD31 were elevated and cell cycle genes were induced. Ejection fraction improved by six to seven percent. CONCLUSIONS: Co-administration of HO-1 MSCs plus hESC-CMs increased expression of pro-survival and angiogenesis-promoting genes in human cells and transcripts of cardiac and endothelial cell markers in rodent cells, consistent with activation of tissue repair in both transplanted hESC-CMs and the host heart.
Collapse
Affiliation(s)
- Mary Kearns-Jonker
- Dept of Cardiothoracic Surgery, Childrens Hospital Los Angeles, Los Angeles, CA, USA ; Dept of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rapti K, Chaanine AH, Hajjar RJ. Targeted gene therapy for the treatment of heart failure. Can J Cardiol 2011; 27:265-83. [PMID: 21601767 PMCID: PMC5902317 DOI: 10.1016/j.cjca.2011.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 12/18/2022] Open
Abstract
Chronic heart failure is one of the leading causes of morbidity and mortality in Western countries and is a major financial burden to the health care system. Pharmacologic treatment and implanting devices are the predominant therapeutic approaches. They improve survival and have offered significant improvement in patient quality of life, but they fall short of producing an authentic remedy. Cardiac gene therapy, the introduction of genetic material to the heart, offers great promise in filling this void. In-depth knowledge of the underlying mechanisms of heart failure is, obviously, a prerequisite to achieve this aim. Extensive research in the past decades, supported by numerous methodological breakthroughs, such as transgenic animal model development, has led to a better understanding of the cardiovascular diseases and, inadvertently, to the identification of several candidate genes. Of the genes that can be targeted for gene transfer, calcium cycling proteins are prominent, as abnormalities in calcium handling are key determinants of heart failure. A major impediment, however, has been the development of a safe, yet efficient, delivery system. Nonviral vectors have been used extensively in clinical trials, but they fail to produce significant gene expression. Viral vectors, especially adenoviral, on the other hand, can produce high levels of expression, at the expense of safety. Adeno-associated viral vectors have emerged in recent years as promising myocardial gene delivery vehicles. They can sustain gene expression at a therapeutic level and maintain it over extended periods of time, even for years, and, most important, without a safety risk.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|