1
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
2
|
Kloesel B, DiNardo JA, Body SC. Cardiac Embryology and Molecular Mechanisms of Congenital Heart Disease: A Primer for Anesthesiologists. Anesth Analg 2017; 123:551-69. [PMID: 27541719 DOI: 10.1213/ane.0000000000001451] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Congenital heart disease is diagnosed in 0.4% to 5% of live births and presents unique challenges to the pediatric anesthesiologist. Furthermore, advances in surgical management have led to improved survival of those patients, and many adult anesthesiologists now frequently take care of adolescents and adults who have previously undergone surgery to correct or palliate congenital heart lesions. Knowledge of abnormal heart development on the molecular and genetic level extends and improves the anesthesiologist's understanding of congenital heart disease. In this article, we aim to review current knowledge pertaining to genetic alterations and their cellular effects that are involved in the formation of congenital heart defects. Given that congenital heart disease can currently only occasionally be traced to a single genetic mutation, we highlight some of the difficulties that researchers face when trying to identify specific steps in the pathogenetic development of heart lesions.
Collapse
Affiliation(s)
- Benjamin Kloesel
- From the Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
3
|
Upadhyay RK. Emerging risk biomarkers in cardiovascular diseases and disorders. J Lipids 2015; 2015:971453. [PMID: 25949827 PMCID: PMC4407625 DOI: 10.1155/2015/971453] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 12/16/2022] Open
Abstract
Present review article highlights various cardiovascular risk prediction biomarkers by incorporating both traditional risk factors to be used as diagnostic markers and recent technologically generated diagnostic and therapeutic markers. This paper explains traditional biomarkers such as lipid profile, glucose, and hormone level and physiological biomarkers based on measurement of levels of important biomolecules such as serum ferritin, triglyceride to HDLp (high density lipoproteins) ratio, lipophorin-cholesterol ratio, lipid-lipophorin ratio, LDL cholesterol level, HDLp and apolipoprotein levels, lipophorins and LTPs ratio, sphingolipids, Omega-3 Index, and ST2 level. In addition, immunohistochemical, oxidative stress, inflammatory, anatomical, imaging, genetic, and therapeutic biomarkers have been explained in detail with their investigational specifications. Many of these biomarkers, alone or in combination, can play important role in prediction of risks, its types, and status of morbidity. As emerging risks are found to be affiliated with minor and microlevel factors and its diagnosis at an earlier stage could find CVD, hence, there is an urgent need of new more authentic, appropriate, and reliable diagnostic and therapeutic markers to confirm disease well in time to start the clinical aid to the patients. Present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of CVDs, HF (heart failures), and various lipid abnormalities and disorders in the future.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
4
|
Ramsbottom SA, Sharma V, Rhee HJ, Eley L, Phillips HM, Rigby HF, Dean C, Chaudhry B, Henderson DJ. Vangl2-regulated polarisation of second heart field-derived cells is required for outflow tract lengthening during cardiac development. PLoS Genet 2014; 10:e1004871. [PMID: 25521757 PMCID: PMC4270488 DOI: 10.1371/journal.pgen.1004871] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 11/03/2014] [Indexed: 11/23/2022] Open
Abstract
Planar cell polarity (PCP) is the mechanism by which cells orient themselves in the plane of an epithelium or during directed cell migration, and is regulated by a highly conserved signalling pathway. Mutations in the PCP gene Vangl2, as well as in other key components of the pathway, cause a spectrum of cardiac outflow tract defects. However, it is unclear why cells within the mesodermal heart tissue require PCP signalling. Using a new conditionally floxed allele we show that Vangl2 is required solely within the second heart field (SHF) to direct normal outflow tract lengthening, a process that is required for septation and normal alignment of the aorta and pulmonary trunk with the ventricular chambers. Analysis of a range of markers of polarised epithelial tissues showed that in the normal heart, undifferentiated SHF cells move from the dorsal pericardial wall into the distal outflow tract where they acquire an epithelial phenotype, before moving proximally where they differentiate into cardiomyocytes. Thus there is a transition zone in the distal outflow tract where SHF cells become more polarised, turn off progenitor markers and start to differentiate to cardiomyocytes. Membrane-bound Vangl2 marks the proximal extent of this transition zone and in the absence of Vangl2, the SHF-derived cells are abnormally polarised and disorganised. The consequent thickening, rather than lengthening, of the outflow wall leads to a shortened outflow tract. Premature down regulation of the SHF-progenitor marker Isl1 in the mutants, and accompanied premature differentiation to cardiomyocytes, suggests that the organisation of the cells within the transition zone is important for maintaining the undifferentiated phenotype. Thus, Vangl2-regulated polarisation and subsequent acquisition of an epithelial phenotype is essential to lengthen the tubular outflow vessel, a process that is essential for on-going cardiac morphogenesis. Congenital heart defects are common, affecting almost 1% of all live births. Many of these affect the outflow region, where the aorta and pulmonary trunk connect with the main ventricular chambers. Congenital heart defects arise from disruption of normal developmental processes and can be modelled in mice. Thus, studying normal development, together with mouse mutants that develop heart malformations, should shed light on why these common anomalies arise. We have studied cardiac development in a mouse mutant for the Vangl2 gene, a key component of the planar cell polarity (PCP) pathway. This pathway controls the orientations of cells in epithelia and during directional cell migration. Here, we show that PCP signalling is required by cells derived from the second heart field, which forms the outflow tract walls. We show that in the absence of Vangl2, the cells within the distal outflow tract walls are non-polarised and disorganised. As a consequence the outflow tract is shortened and does not align properly with the ventricles. Thus, we show why disruption of a key PCP gene leads to outflow tract malformations. This is important for understanding heart development, but also more generally for understanding how PCP signalling regulates growth of tubular structures.
Collapse
Affiliation(s)
- Simon A. Ramsbottom
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Vipul Sharma
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Hong Jun Rhee
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Lorraine Eley
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Helen M. Phillips
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Hannah F. Rigby
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Charlotte Dean
- Leukocyte Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, United Kingdom
| | - Bill Chaudhry
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Deborah J. Henderson
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Udupa S, Smythe JF, Wong DT. Retroesophageal brachiocephalic artery assessed by magnetic resonance imaging: a case report and literature review. Can J Cardiol 2014; 30:1716-20. [PMID: 25475473 DOI: 10.1016/j.cjca.2014.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/29/2023] Open
Abstract
A right aortic arch with a retroesophageal brachiocephalic artery is a very rare type of vascular ring. We present a case report along with a review of published cases to date. Twelve publications from 1968-2014 describe a retroesophageal brachiocephalic artery in a total of 13 patients. The mean age at diagnosis was 8.7 ± 16 years. Four of the 13 patients were boys. Nearly half of the patients were symptomatic, with dysphagia or respiratory difficulties. Ten patients (77%) had associated congenital heart defects. Of the 13 patients with retroesophageal brachiocephalic artery, 12 had a right aortic arch, and only 1 had a left aortic arch associated with complex congenital heart disease. Investigations used in the diagnosis of the vascular ring include angiography, esophagography, echocardiography, and computed tomography. Only 2 patients had the diagnosis confirmed with magnetic resonance imaging (MRI), but this was in the setting of complex congenital heart disease. In conclusion, a right aortic arch with a retroesophageal left brachiocephalic artery is an extremely rare form of vascular ring and is often seen in association with other forms of congenital heart disease. Cardiac MRI can be used as a primary diagnostic modality for both the assessment of the vascular ring anatomy and the hemodynamics of associated cardiac malformations in the preoperative setting.
Collapse
Affiliation(s)
- Sharmila Udupa
- Division of Cardiology, Department of Pediatrics, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.
| | - John F Smythe
- Division of Cardiology, Department of Pediatrics, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
| | - Derek T Wong
- Division of Cardiology, Department of Pediatrics, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|