1
|
Komal S, Han SN, Cui LG, Zhai MM, Zhou YJ, Wang P, Shakeel M, Zhang LR. Epigenetic Regulation of Macrophage Polarization in Cardiovascular Diseases. Pharmaceuticals (Basel) 2023; 16:141. [PMID: 37259293 PMCID: PMC9963081 DOI: 10.3390/ph16020141] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 08/17/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of hospitalization and death worldwide, especially in developing countries. The increased prevalence rate and mortality due to CVDs, despite the development of several approaches for prevention and treatment, are alarming trends in global health. Chronic inflammation and macrophage infiltration are key regulators of the initiation and progression of CVDs. Recent data suggest that epigenetic modifications, such as DNA methylation, posttranslational histone modifications, and RNA modifications, regulate cell development, DNA damage repair, apoptosis, immunity, calcium signaling, and aging in cardiomyocytes; and are involved in macrophage polarization and contribute significantly to cardiac disease development. Cardiac macrophages not only trigger damaging inflammatory responses during atherosclerotic plaque formation, myocardial injury, and heart failure but are also involved in tissue repair, remodeling, and regeneration. In this review, we summarize the key epigenetic modifications that influence macrophage polarization and contribute to the pathophysiology of CVDs, and highlight their potential for the development of advanced epigenetic therapies.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Zhai
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue-Jiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Immune Infiltrates of m5C RNA Methylation-Related LncRNAs in Uterine Corpus Endometrial Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1531474. [PMID: 35392434 PMCID: PMC8983181 DOI: 10.1155/2022/1531474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/08/2022] [Indexed: 11/18/2022]
Abstract
Aberrant 5-methylcytidine (m5C) modification plays an essential role in the progression of different cancers. More and more researchers are focusing on developing a lncRNA-based risk model to assess the clinical prognosis of cancer patients. However, the impact of m5C-related lncRNAs on the prognosis of patients with uterine corpus endometrial carcinoma (UCEC), as well as the immune microenvironment of UCEC, remains unclear. Here, we comprehensively analyzed the predictive value of m5C-associated lncRNAs in UCEC and their association with the tumor immune microenvironment, according to the information extracted from the TCGA-UCEC dataset. We identified a total of 32 m5C-associated lncRNAs that were significantly correlated with the prognosis of UCEC patients. Two molecular subtypes were determined by consensus clustering analysis of these 32 m5C-associated prognostic lncRNAs. Further data showed that cluster 1 was associated with poor clinical prognosis, advanced tumor grade, higher PD-L1 expression levels, higher ESTIMATEScore, and higher immuneScore, as well as the immune cell infiltration. Then, 17 m5C-associated lncRNAs with prognostic values were obtained using LASSO regression analysis. And a risk model was constructed based on these 17 lncRNAs. It was revealed that the risk model could be used as an independent factor for UCEC prognosis. In addition, patients with UCEC in the high-risk group had higher tumor grades and immune scores. The risk model based on m5C-related lncRNAs was also closely associated with infiltrating immune cells. In conclusion, our study elucidated the crucial roles of the identified m5C-related lncRNAs in the UCEC patients' prognoses, as well as in the immune microenvironment in UCEC. The results suggest that the components of risk models based on the m5C-related lncRNAs may serve as important mediators of the immune microenvironment in UCEC.
Collapse
|
3
|
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. Pathophysiology of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063346. [PMID: 35328769 PMCID: PMC8954705 DOI: 10.3390/ijms23063346] [Citation(s) in RCA: 393] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis is the main risk factor for cardiovascular disease (CVD), which is the leading cause of mortality worldwide. Atherosclerosis is initiated by endothelium activation and, followed by a cascade of events (accumulation of lipids, fibrous elements, and calcification), triggers the vessel narrowing and activation of inflammatory pathways. The resultant atheroma plaque, along with these processes, results in cardiovascular complications. This review focuses on the different stages of atherosclerosis development, ranging from endothelial dysfunction to plaque rupture. In addition, the post-transcriptional regulation and modulation of atheroma plaque by microRNAs and lncRNAs, the role of microbiota, and the importance of sex as a crucial risk factor in atherosclerosis are covered here in order to provide a global view of the disease.
Collapse
Affiliation(s)
- Shifa Jebari-Benslaiman
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
| | - Unai Galicia-García
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Asier Larrea-Sebal
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | | | - Iraide Alloza
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Koen Vandenbroeck
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Inflammation & Biomarkers Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Asier Benito-Vicente
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| | - César Martín
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48940 Leioa, Bizkaia, Spain; (S.J.-B.); (I.A.); (K.V.)
- Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain; (U.G.-G.); (A.L.-S.)
- Correspondence: (A.B.-V.); (C.M.); Tel.: +34-946-01-2741 (C.M.)
| |
Collapse
|
4
|
Ma X, Liu H, Chen F. Functioning of Long Noncoding RNAs Expressed in Macrophage in the Development of Atherosclerosis. Front Pharmacol 2020; 11:567582. [PMID: 33381026 PMCID: PMC7768882 DOI: 10.3389/fphar.2020.567582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammation is part of the pathological process during atherosclerosis (AS). Due to the abundance of monocytes/macrophages within the arterial plaque, monocytes/macrophages have become a critical cellular target in AS studies. In recent decades, a number of long noncoding RNAs (lncRNAs) have been found to exert regulatory roles on the macrophage metabolism and macrophage plasticity, consequently promoting or suppressing atherosclerotic inflammation. In this review, we provide a comprehensive overview of lncRNAs in macrophage biology, highlighting the potential role of lncRNAs in AS based on recent findings, with the aim to identify disease biomarkers and future therapeutic interventions for AS.
Collapse
Affiliation(s)
- Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Abstract
Purpose of Review To summarize recent insights into long non-coding RNAs (lncRNAs) involved in atherosclerosis. Because atherosclerosis is the main underlying pathology of cardiovascular diseases (CVD), the world’s deadliest disease, finding novel therapeutic strategies is of high interest. Recent Findings LncRNAs can bind to proteins, DNA, and RNA regulating disease initiation and plaque growth as well as plaque stability in different cell types such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages. A number of lncRNAs have been implicated in cholesterol homeostasis and foam cell formation such as LASER, LeXis, and CHROME. Among others, MANTIS, lncRNA-CCL2, and MALAT1 were shown to be involved in vascular inflammation. Further regulations include, but are not limited to, DNA damage response in ECs, phenotypic switch of VSMCs, and various cell death mechanisms. Interestingly, some lncRNAs are closely correlated with response to statin treatment, such as NEXN-AS1 or LASER. Additionally, some lncRNAs may serve as CVD biomarkers. Summary LncRNAs are a potential novel therapeutic target to treat CVD, but research of lncRNA in atherosclerosis is still in its infancy. With increasing knowledge of the complex and diverse regulations of lncRNAs in the heterogeneous environment of atherosclerotic plaques, lncRNAs hold promise for their clinical translation in the near future.
Collapse
Affiliation(s)
- Tatjana Josefs
- Department of Physiology, Amsterdam Cardiovascular Science, VU University, Amsterdam UMC, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Science, VU University, Amsterdam UMC, Postbus 7057, 1007 MB, Amsterdam, The Netherlands. .,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany. .,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Lu W, Sheng Z, Zhang Z, Ma G, Chen L, Huang J, Ding J, Dai Q. LncRNA-LUNAR1 Levels Are Closely Related to Coronary Collaterals in Patients with Chronic Total Coronary Occlusion. J Cardiovasc Transl Res 2020; 13:171-180. [PMID: 31997261 DOI: 10.1007/s12265-019-09917-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Coronary collaterals can effectively improve myocardial blood supply to the area of CTO (chronic total coronary occlusion) and can, thus, reduce infarct size. LUNAR1(leukemia-induced noncoding activator RNA-1) is a specific LncRNA regulated by Notch signaling that not only can enhance the expression of IGFR-1 but also can promote angiogenesis and cell survival. Here, we investigated the relationship between LncRNA-LUNAR1 levels in peripheral plasma and the formation of coronary collaterals. In total, 172 patients with CTO were enrolled and followed up for 12 months. Coronary collaterals were scored according to the Rentrop scoring system. Preclinical tests of tube formation were used to address the mechanisms behind the association between LncRNA-LUNAR1 and development of collaterals. Clinical data and inflammatory factors, including comorbidity, CD14++CD16- monocytes, and CCL2 (chemokine motif ligand 2), were compared and analyzed. Real-time PCR was used to detect the expression of LncRNA-LUNAR1 in peripheral blood plasma. The Rentrop score was positively correlated with LncRNA-LUNAR1 levels in patients with CTO (R = 0.47, p < 0.001). Tube formation assay proved the direct association between LncRNA-LUNAR1 and development of collaterals (p = 0.011). The univariate Kaplan-Meier analysis revealed that patients with low LncRNA-LUNAR1 expression exhibited worse clinical outcomes than those with high LncRNA-LUNAR1 levels (p = 0.008). Receiver operating characteristic (ROC) curve and correlation analysis further confirmed that LncRNA-LUNAR1 expression was closely related to chronic inflammatory diseases, especially diabetes (area = 0.644, p = 0.001; 95% CI, 0.562-0.726). Furthermore, both CD14++CD16- monocytes (r = - 0.37; p < 0.001) and CCL2 levels (r = - 0.35; p < 0.001) negatively affected the expression of LncRNA-LUNAR1. LncRNA-LUNAR1 expression was positively correlated with coronary collaterals in patients with CTO. Inflammatory factors, including CD14++CD16- monocytes and CCL2, may be risk factors affecting LncRNA-LUNAR1 expression.
Collapse
Affiliation(s)
- Wenbin Lu
- Department of Cardiology, ZhongDa Hospital affiliated with Southeast University, Nanjing, China.
| | - Zulong Sheng
- Department of Cardiology, ZhongDa Hospital affiliated with Southeast University, Nanjing, China
| | - Ziwei Zhang
- Division of Endocrinology, The Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, ZhongDa Hospital affiliated with Southeast University, Nanjing, China
| | - Lijuan Chen
- Department of Cardiology, ZhongDa Hospital affiliated with Southeast University, Nanjing, China
| | - Jian Huang
- Department of Cardiology, Lishui Branch, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Jiandong Ding
- Department of Cardiology, ZhongDa Hospital affiliated with Southeast University, Nanjing, China.
| | - Qiming Dai
- Department of Cardiology, Lishui Branch, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China.
| |
Collapse
|