1
|
Do HH, Ullah S, Villinger A, Lecka J, Sévigny J, Ehlers P, Iqbal J, Langer P. Palladium-catalyzed synthesis and nucleotide pyrophosphatase inhibition of benzo[4,5]furo[3,2- b]indoles. Beilstein J Org Chem 2019; 15:2830-2839. [PMID: 31807218 PMCID: PMC6880817 DOI: 10.3762/bjoc.15.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023] Open
Abstract
A two-step palladium-catalyzed procedure based on Suzuki–Miyaura cross coupling, followed by a double Buchwald–Hartwig reaction, allows for the synthesis of pharmaceutically relevant benzo[4,5]furo[3,2-b]indoles in moderate to very good yield. The synthesized compounds have been analyzed with regard to their inhibitory activity (IC50) of nucleotide pyrophosphatases h-NPP1 and h-NPP3. The activity lies in the nanomolar range. The results were rationalized based on docking studies.
Collapse
Affiliation(s)
- Hoang Huy Do
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany.,Faculty of Chemistry, VNU Hanoi University of Science, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 110403, Vietnam
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Peter Ehlers
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany.,Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany.,Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
2
|
Melnyk MI, Dryn DO, Al Kury LT, Zholos AV, Soloviev AI. Liposomal quercetin potentiates maxi-K channel openings in smooth muscles and restores its activity after oxidative stress. J Liposome Res 2018; 29:94-101. [DOI: 10.1080/08982104.2018.1458864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mariia I. Melnyk
- Institute of Pharmacology and Toxicology, National Academy of Medical Science, Kyiv, Ukraine
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dariia O. Dryn
- Institute of Pharmacology and Toxicology, National Academy of Medical Science, Kyiv, Ukraine
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lina T. Al Kury
- Department of Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Alexander V. Zholos
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- ESC “Institute of Biology and Medicine”, Taras Shevchenko Kyiv National University, Kyiv, Ukraine
| | - Anatoly I. Soloviev
- Institute of Pharmacology and Toxicology, National Academy of Medical Science, Kyiv, Ukraine
- ESC “Institute of Biology and Medicine”, Taras Shevchenko Kyiv National University, Kyiv, Ukraine
| |
Collapse
|
3
|
Wijerathne TD, Kim J, Yang D, Lee KP. Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BK Ca activator LDD175. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:241-249. [PMID: 28280418 PMCID: PMC5343058 DOI: 10.4196/kjpp.2017.21.2.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/15/2022]
Abstract
Plasma membrane hyperpolarization associated with activation of Ca2+-activated K+ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary γ2-subunit, LRRC52 (leucine-rich-repeat–containing 52), is known to mediate the pH-sensitive, sperm-specific K+ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical BKCa activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting γ2 subunit, hLRRC52. As previously reported, Slo3 K+ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 K+ current, and internal alkalinization and Ca2+ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 K+ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular Ca2+. In contrast, elevation of intracellular Ca2+ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate Ca2+-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm.
Collapse
Affiliation(s)
- Tharaka Darshana Wijerathne
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jihyun Kim
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21936, Korea
| | - Kyu Pil Lee
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
4
|
Currò D. The Modulation of Potassium Channels in the Smooth Muscle as a Therapeutic Strategy for Disorders of the Gastrointestinal Tract. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:263-305. [PMID: 27038377 DOI: 10.1016/bs.apcsb.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alterations of smooth muscle contractility contribute to the pathophysiology of important functional gastrointestinal disorders (FGIDs) such as functional dyspepsia and irritable bowel syndrome. Consequently, drugs that decrease smooth muscle contractility are effective treatments for these diseases. Smooth muscle contraction is mainly triggered by Ca(2+) influx through voltage-dependent channels located in the plasma membrane. Thus, the modulation of the membrane potential results in the regulation of Ca(2+) influx and cytosolic levels. K(+) channels play fundamental roles in these processes. The open probability of K(+) channels increases in response to various stimuli, including membrane depolarization (voltage-gated K(+) [K(V)] channels) and the increase in cytosolic Ca(2+) levels (Ca(2+)-dependent K(+) [K(Ca)] channels). K(+) channel activation is mostly associated with outward K(+) currents that hyperpolarize the membrane and reduce cell excitability and contractility. In addition, some K(+) channels are open at the resting membrane potential values of the smooth muscle cells in some gut segments and contribute to set the resting membrane potential itself. The closure of these channels induces membrane depolarization and smooth muscle contraction. K(V)1.2, 1.5, 2.2, 4.3, 7.4 and 11.1, K(Ca)1.1 and 2.3, and inwardly rectifying type 6K(+) (K(ir)6) channels play the most important functional roles in the gastrointestinal smooth muscle. Activators of all these channels may theoretically relax the gastrointestinal smooth muscle and could therefore be promising new therapeutic options for FGID. The challenge of future drug research and development in this area will be to synthesize molecules selective for the channel assemblies expressed in the gastrointestinal smooth muscle.
Collapse
Affiliation(s)
- Diego Currò
- Institute of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
5
|
Truong MA, Nakano K. Synthesis of Benzofuro- and Indolo[3,2-b]indoles via Palladium-Catalyzed Double N-Arylation and Their Physical Properties. J Org Chem 2015; 80:11566-72. [DOI: 10.1021/acs.joc.5b02086] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Minh Anh Truong
- Department of Organic and
Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Nakano
- Department of Organic and
Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Sung HH, Choo SH, Han DH, Chae MR, Kang SJ, Park CS, So I, Park JK, Lee SW. Effect of the novel BKCa channel opener LDD175 on the modulation of corporal smooth muscle tone. J Sex Med 2014; 12:29-38. [PMID: 25385091 DOI: 10.1111/jsm.12744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The BKCa channel has been reported to play an important role in erectile function. Recently, novel BKCa channel activator, LDD175, was introduced. AIM This study aims to investigate whether LDD175 relaxes corporal smooth muscle (CSM) via BKCa channel activation. METHODS After isolation of CSM strip from a male rabbit model, contraction studies using organ bath was performed. Isolating human tissue and cell cultures, electrophysiological studies were done via whole-cell patch-clamp recording. MAIN OUTCOME MEASURES Vasodilatory effects of LDD175 were evaluated by cumulative addition ranging from 10(-7) to 10(-4) M in corpus cavernosal strips after precontraction with 10(-5) M phenylephrine via organ bath system. Using cultured human CSM cells, patch-clamp recording was performed. Erectile function was measured by in vivo rat cavernous nerve stimulation. RESULTS LDD175 caused an endothelium-independent relaxation of corporal tissues, and this effect was abolished by pretreatment with iberiotoxin. The relaxation effect of 10(-4) M LDD175 was greater than that of 10(-6) M udenafil (54.0 ± 3.1% vs. 34.5 ± 3.9%, P < 0.05); 10(-5) M LDD175 with 10(-6) M udenafil caused a greater relaxation effect on strips than 10(-5) M LDD175 or 10(-6) M udenafil alone (50.7%, 34.1%, vs. 20.7%, respectively, P < 0.001). In patch-clamp recordings, LDD175 increased K(+) currents in a dose-dependent manner, and washout of LDD175 or the addition of iberiotoxin fully reversed the increase. Intravenous LDD175 improved erectile function measured by area under the curve (AUC) of the intracavernosal pressure (ICP)/arterial blood pressure (ABP) ratio (1,612.1 ± 135.6 vs. 1,093.7 ± 123.1, P < 0.05). There was no difference between 10 mg/kg LDD175 and 1 mg/kg udenafil regarding maximal ICP, maximal ICP/ABP ratio, and the AUC of the ICP/ABP ratio (P > 0.05). CONCLUSIONS LDD175 leads to an endothelium-independent relaxation of erectile tissue, primarily through the opening of BKCa channels. The results suggest that LDD175 might be a new candidate treatment for erectile dysfunction.
Collapse
Affiliation(s)
- Hyun Hwan Sung
- The Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang Z, Pan A, Zuo W, Guo J, Zhou W. Relaxant effect of flavonoid naringenin on contractile activity of rat colonic smooth muscle. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1177-1183. [PMID: 24997391 DOI: 10.1016/j.jep.2014.06.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Disturbed gastrointestinal (GI) motility can be associated with smooth muscle abnormalities and dysfunction. Exploring innovative approaches that can modulate the disturbed colonic motility are of great importance for clinical therapeutics. Naringenin, a flavonoid presented in many traditional Chinese herbal medicines, has been shown to have a relaxant effect on different smooth muscles. The aim of the present study was to investigate the effect of naringenin on regulation of GI motility. MATERIAL AND METHODS Mechanical recording was used to investigate the effect of naringenin on isolated rat colonic smooth muscle spontaneous contractions. Whole cell patch clamp, intracellular [Ca(2+)] concentration ([Ca(2+)]i) and membrane potential measurements were examined on primary cultures of colonic smooth muscle cells (SMCs). A neostigmine-stimulated rat model was utilized to investigate the effect of naringenin in vivo. RESULTS Naringenin induced a concentration-dependent inhibition (1-1000 μM) on rat colonic spontaneous contraction, which was reversible after wash out. The external Ca(2+) influx induced contraction and [Ca(2+)]i increase were inhibited by naringenin (100 μM). In rat colonic SMCs, naringenin-induced membrane potential hyperpolarization was sensitive to TEA and selective large-conductance calcium-activated K(+) (BKCa) channel inhibitor iberiotoxin. Under whole cell patch-clamp condition, naringenin stimulated an iberiotoxin-sensitive BKCa current, which was insensitive to changes in the [Ca(2+)]i concentration. Furthermore, naringenin significantly suppressed neostigmine-enhanced rat colon transit in vivo. CONCLUSION Our results for the first time demonstrated the relaxant effect of flavonoid naringenin on colon smooth muscle both in vitro and in vivo. The relaxant effect of naringenin was attributed to direct activation of BKCa channels, which subsequently hyperpolarized the colonic SMCs and decreased Ca(2+) influx through VDCC. Naringenin might be of therapeutic value in the treatment of GI motility disorders.
Collapse
Affiliation(s)
- ZiHuan Yang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.
| | - Ao Pan
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - WuLin Zuo
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - JingHui Guo
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - WenLiang Zhou
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Effects of ginsenoside Re on rat jejunal contractility. J Nat Med 2014; 68:530-8. [DOI: 10.1007/s11418-014-0831-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
|
9
|
Kim KS, Shim WS, dela Peña IC, Seo EK, Kim WY, Jin HE, Kim DD, Chung SJ, Cheong JH, Shim CK. Smooth Muscle Relaxation Activity of an Aqueous Extract of Dried Immature Fruit of Poncirus Trifoliata (PF-W) on an Isolated Strip of Rat Ileum. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We demonstrated that an aqueous extract of dried immature fruit of Poncirus trifoliate (PF-W) produces relaxation of intestinal smooth muscle using the ileac strips of a rat. Furthermore, the underlying mechanism of its relaxant activity was investigated. PF-W was prepared using the standard extraction protocol. A 1.5 – 2 cm long rat ileac strip was placed in an organ bath with Tyrode's solution and smooth muscle contractility was recorded by connecting it to a force transducer. Various compounds were added to the organ baths, and changes in muscular contractility were measured. PF-W concentration-dependently induced relaxation of rat ileac strips that were contracted both spontaneously and via acetylcholine treatment. Various potassium channel blockers did not inhibit the relaxation by PF-W. No difference in the effect of PF-W was observed between ileac strips treated with low (20 mM) and high concentrations (60 mM) of KCl. PF-W inhibited the contraction of rat ileac strips induced by extracellular calcium. PF-W acts as a potent smooth muscle relaxant, implicating its possible action as a rapid acting reliever for abdominal pains and a cure for intestinal convulsion. Considering that PF-W also exhibits prokinetic activity, its use in various gastrointestinal disorders seems promising.
Collapse
Affiliation(s)
- Kyu-Sang Kim
- College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151–742, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 406–799, South Korea
| | | | - Eun-Kyung Seo
- Natural Products Chemistry Laboratory, College of Pharmacy, Ewha Woman's University, Seoul 120–750, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151–742, Republic of Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151–742, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151–742, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151–742, Republic of Korea
| | - Jae-Hoon Cheong
- College of Pharmacy, Sahmyook University, Seoul 139–742, Republic of Korea
| | - Chang-Koo Shim
- College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151–742, Republic of Korea
| |
Collapse
|
10
|
Beyder A, Farrugia G. Targeting ion channels for the treatment of gastrointestinal motility disorders. Therap Adv Gastroenterol 2012; 5:5-21. [PMID: 22282704 PMCID: PMC3263980 DOI: 10.1177/1756283x11415892] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (Na(V)), calcium (Ca(V)), potassium (K(V), K(Ca)), chloride (Cl(-)) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress.
Collapse
Affiliation(s)
- Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
11
|
On benzofuroindole analogues as smooth muscle relaxants. J Biomed Biotechnol 2011; 2011:389056. [PMID: 21941431 PMCID: PMC3177241 DOI: 10.1155/2011/389056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/14/2011] [Indexed: 11/18/2022] Open
Abstract
At least two laboratories have independently reported the synthesis of benzofuroindole compounds having potential therapeutic implications in many disease states including those that involve smooth muscle hyperactivity. Through a series of in vitro screenings, they demonstrated the efficacy (and selectivity) of these compounds to potentiate large conductance calcium- (Ca2+-) activated K+ (BKCa) channels, by far, the most characterized of all Ca2+-dependent K+ channels. Interestingly, promising benzofuroindole derivatives such as compound 7 (10H-benzo[4,5]furo[3,2-b]indole) and compound 22 (4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid) both exhibited high bladder (versus aorta) selectivity, making them attractive alternative treatments for bladder overactivity. In recent reports, compound 22 (LDD175 or TBIC) also showed inhibition of ileum and uterine contractions, indicating multiple target tissues, which is not surprising as BKCa channels are ubiquitously expressed in the animal and human tissues. In this paper, the authors discuss the value of benzofuroindole compounds and the challenges that need to be overcome if they were considered as smooth muscle relaxants.
Collapse
|
12
|
Ahn HS, dela Peña I, Kim YC, Cheong JH. 4-Chloro-7-Trifluoromethyl-10 H- Benzo[4,5]furo[3,2- b]Indole-1-Carboxylic Acid (TBIC), a Putative BK Ca Channel Opener with Uterine Relaxant Activities. Pharmacology 2011; 87:331-40. [DOI: 10.1159/000328141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/04/2011] [Indexed: 11/19/2022]
|