1
|
Herbet M, Szopa A, Serefko A, Wośko S, Gawrońska-Grzywacz M, Izdebska M, Piątkowska-Chmiel I, Betiuk P, Poleszak E, Dudka J. 8-Cyclopentyl-1,3-dimethylxanthine enhances effectiveness of antidepressant in behavioral tests and modulates redox balance in the cerebral cortex of mice. Saudi Pharm J 2018; 26:694-702. [PMID: 29991913 PMCID: PMC6035324 DOI: 10.1016/j.jsps.2018.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/05/2018] [Indexed: 02/05/2023] Open
Abstract
The objective of our study was to investigate whether 8-cyclopentyl-1,3-dimethylxanthine (CPT), associated with the adenosine system, enhances the antidepressant efficacy of antidepressant. All experiments were carried out on Albino Swiss mice. Following drugs: CPT (3 mg/kg) and imipramine (15 mg/kg) were administered intraperitoneally (ip), 60 min before tests. Two behavioral tests on antidepressant capability - a forced swim test (FST) and a tail suspension test (TST) - were performed. To examine whether co-administration of CPT with antidepressants affects the redox balance, the lipid peroxidation products (LPO), glutathione (GSH), glutathione disulfide (GSSG), nicotinamide adenine dinucleotide phosphate (NADP+), and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were determined in the cerebral cortex. The results have demonstrated a CPT-induced enhancement of the antidepressant-like effect of imipramine both in the FST and TST, which may indicate that the adenosine system may be involved in the increasing the effect of antidepressant. Co-administration of CPT with imipramine, such as imipramine alone, decreased the NADP+ and LPO concentrations and increased the GSH/GSSG ratio in comparison to the control, which may confirm beneficial - but comparable to imipramine - effect on redox balance under environmental stress conditions. An increase in the concentration of GSSG in the cortex of animals treated with imipramine in ineffective dose compared to control and no such changes after combined administration of both drugs may suggest a favorable oxidation-reduction potential resulting from their synergistic antidepressant effect.
Collapse
Affiliation(s)
- Mariola Herbet
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Sylwia Wośko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Magdalena Izdebska
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Paulina Betiuk
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| |
Collapse
|