1
|
Yadav CS, Krishna A, Singh SP, Kishan J, Chopra S, Srivastava K, Guha R, Lohani MB, Ahmad V, Alghamdi AA, Khan AR, Azad I. Synthesis, characterization and bio-evaluation of novel series of pyrazoline derivatives as potential antifungal agents. Sci Rep 2025; 15:14752. [PMID: 40295598 PMCID: PMC12037995 DOI: 10.1038/s41598-025-98645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
In this study, a series of novel α, β-unsaturated carbonyl compounds (3a-j) and their pyrazoline derivatives (4a-e and 5a-b) were designed and successfully synthesized. All synthesized compounds were characterized using various spectroscopic techniques, including 1H NMR, 13C NMR, and mass spectrometry. The biological activity of these compounds was evaluated against five bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii) and three fungal strains (Candida tropicalis, Candida parapsilosis, and Candida albicans). The results revealed that compound (4c) exhibited potent antifungal activity with a minimum inhibitory concentration (MIC) of 6.25 µg/mL across all tested strains and zone of inhibition (ZOI) against Candida albicans is 27 mm. Furthermore, time kill kinetics of Candida albicans and haemolysis assays also perform in support of their antifungal activity. Additionally, all synthesized compounds were subjected to computational analysis using molecular descriptors, ADMET, molecular docking, and molecular dynamics to find protein-ligand interactions. Molecular docking studies indicated that the most effective antifungal compounds (3h and 4c) exhibited binding energies of -8.76 and -8.44 kcal/mol for DHFR and -7.96 and -8.24 kcal/mol for NMT1, respectively. The obtained results revealed that these compounds exhibit potential interactions with antifungal targets as dual inhibitors. As a result, this study finds an important approach to synthesized compounds with potential antifungal activity.
Collapse
Affiliation(s)
- Chandra Shekhar Yadav
- Department of Chemistry, Integral University, Lucknow, India
- Department of Laboratory Animal Facility, CSIR-CDRI, Lucknow, India
| | - Atul Krishna
- Division of Molecular Microbiology and Immunology, CSIR-CDRI, Lucknow, India
| | | | - Jai Kishan
- Division of Molecular Microbiology and Immunology, CSIR-CDRI, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-CDRI, Lucknow, India
| | | | - Rajdeep Guha
- Department of Laboratory Animal Facility, CSIR-CDRI, Lucknow, India
| | - Minaxi B Lohani
- Department of Chemistry, Integral University, Lucknow, India
| | - Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Anwar A Alghamdi
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Centre of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Iqbal Azad
- Department of Chemistry, Integral University, Lucknow, India.
| |
Collapse
|
2
|
Khatun B, Rohilla S, Rather MA, Sinha A, Dasgupta S, Mandal M, Maji TK. Improved bioactivities of curcumin pyrazole and its HP$$\beta$$CD inclusion complex compared to curcumin. J CHEM SCI 2023. [DOI: 10.1007/s12039-022-02125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
3
|
Jin W, Botchway BOA, Liu X. Curcumin Can Activate the Nrf2/HO-1 Signaling Pathway and Scavenge Free Radicals in Spinal Cord Injury Treatment. Neurorehabil Neural Repair 2021; 35:576-584. [PMID: 33980059 DOI: 10.1177/15459683211011232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating event that often leads to permanent neurological deficits. Evidence from emerging studies has implicated oxygen-derived free radicals and high-energy oxidants as mediators of secondary SCI. Therefore, targeting these mediators using antioxidants could be beneficial for the disease. Several signaling pathways, such as the nuclear factor erythroid-2-related factor 2/heme oxygenase 1 (Nrf2/HO-1), have been associated with the regulation of some pathophysiological features of SCI. Curcumin is a plant medicinal agent whose diverse pharmacological properties have been extensively investigated and reported, notably its ability to curtail inflammatory damage by inhibiting the nuclear factor-κ-light-chain-enhancer of activated B cells. In this review, we analyze the role of curcumin in activating Nrf2/HO-1 and scavenging free radicals to repair SCI. With its minimal side effects, curcumin could be a potential therapy for SCI treatment.
Collapse
Affiliation(s)
- Wenlong Jin
- Medical College, Shaoxing University, Shaoxing, China
| | | | - Xuehong Liu
- Medical College, Shaoxing University, Shaoxing, China
| |
Collapse
|
4
|
Curcumin Metabolite Tetrahydrocurcumin in the Treatment of Eye Diseases. Int J Mol Sci 2020; 22:ijms22010212. [PMID: 33379248 PMCID: PMC7795090 DOI: 10.3390/ijms22010212] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
Curcumin is one of the most valuable natural products due to its pharmacological activities. However, the low bioavailability of curcumin has long been a problem for its medicinal use. Large studies have been conducted to improve the use of curcumin; among these studies, curcumin metabolites have become a relatively new research focus over the past few years. Additionally, accumulating evidence suggests that curcumin or curcuminoid metabolites have similar or better biological activity than the precursor of curcumin. Recent studies focus on the protective role of plasma tetrahydrocurcumin (THC), a main metabolite of curcumin, against tumors and chronic inflammatory diseases. Nevertheless, studies of THC in eye diseases have not yet been conducted. Since ophthalmic conditions play a crucial role in worldwide public health, the prevention and treatment of ophthalmic diseases are of great concern. Therefore, the present study investigated the antioxidative, anti-inflammatory, antiangiogenic, and neuroprotective effects of THC on four major ocular diseases: age-related cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). While this study aimed to show curcumin as a promising potential solution for eye conditions and discusses the involved mechanistic pathways, further work is required for the clinical application of curcumin.
Collapse
|
5
|
Rakariyatham K, Du Z, Yuan B, Gao Z, Song M, Pan C, Han Y, Wu X, Tang Z, Zhang G, Xiao H. Inhibitory effects of 7,7′-bromo-curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation. Eur J Pharmacol 2019; 858:172479. [DOI: 10.1016/j.ejphar.2019.172479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
|
6
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin Drug Discov 2019; 14:821-842. [DOI: 10.1080/17460441.2019.1614560] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eirini Chainoglou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Mapoung S, Suzuki S, Fuji S, Naiki-Ito A, Kato H, Yodkeeree S, Ovatlarnporn C, Takahashi S, Limtrakul Dejkriengkraikul P. Cyclohexanone curcumin analogs inhibit the progression of castration-resistant prostate cancer in vitro and in vivo. Cancer Sci 2018; 110:596-607. [PMID: 30499149 PMCID: PMC6361605 DOI: 10.1111/cas.13897] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Many prostate cancer patients develop resistance to treatment called castration‐resistant prostate cancer (CRPC) which is the major cause of recurrence and death. In the present study, four cyclohexanone curcumin analogs were synthesized. Additionally, their anticancer progression activity on CRPC cell lines, PC3 and PLS10 cells, was examined. We first determined their anti‐metastasis properties and found that 2,6‐bis‐(4‐hydroxy‐3‐methoxy‐benzylidene)‐cyclohexanone (2A) and 2,6‐bis‐(3,4‐dihydroxy‐benzylidene)‐cyclohexanone (2F) showed higher anti‐invasion properties against CRPC cells than curcumin. Analog 2A inhibited both MMP‐2 and MMP‐9 secretions and activities, whereas analog 2F reduced only MMP activities. These findings suggest that the compounds may inhibit CRPC cell metastasis by decreased extracellular matrix degradation. Analog 2A, the most potent analog, was then subjected to an in vivo study. Similar to curcumin, analog 2A was detectable in the serum of mice at 30 and 60 minutes after i.p. injections. Analog 2A and curcumin (30 mg/kg bodyweight) showed a similar ability to reduce tumor area in lungs of mice that were i.v. injected with PLS10 cells. Additionally, analog 2A showed superior growth inhibitory effect on PLS10 cells than that of curcumin both in vitro and in vivo. The compound inhibited PLS10 cells growth by induction of G1 phase arrest and apoptosis in vitro. Interestingly, analog 2A significantly decreased tumor growth with downregulation of cell proliferation and angiogenesis in PLS10‐bearing mice. Taken together, we could summarize that analog 2A showed promising activities in inhibiting CRPC progression both in vitro and in vivo.
Collapse
Affiliation(s)
- Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Fuji
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand.,Drug Delivery System Excellence Center, Prince of Songkla University, Songkhla, Thailand
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Pornngarm Limtrakul Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Lakey-Beitia J, González Y, Doens D, Stephens DE, Santamaría R, Murillo E, Gutiérrez M, Fernández PL, Rao KS, Larionov OV, Durant-Archibold AA. Assessment of Novel Curcumin Derivatives as Potent Inhibitors of Inflammation and Amyloid-β Aggregation in Alzheimer's Disease. J Alzheimers Dis 2018; 60:S59-S68. [PMID: 28453488 DOI: 10.3233/jad-170071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Brain inflammation plays a key role in the progression of AD. Deposition of senile plaques in the brain stimulates an inflammatory response with the overexpression of pro-inflammatory mediators, such as the neuroinflammatory cytokine. interleukin-6. Curcumin has been revealed to be a potential agent for treating AD following different neuroprotective mechanisms, such as inhibition of aggregation and decrease in brain inflammation. We synthesized new curcumin derivatives with the aim of providing good anti-aggregation capacity but also improved anti-inflammatory activity. Nine curcumin derivatives were synthesized by etherification and esterification of the aromatic region. From these derivatives, compound 8 exhibited an anti-inflammatory effect similar to curcumin, while compounds 3, 4, and 10 were more potent. Moreover, when the anti-aggregation activity is considered, compounds 3, 4, 5, 6, and 10 showed biological activity in vitro. Compound 4 exhibited a strong anti-aggregation effect higher than curcumin. Monofunctionalized curcumin derivatives showed better bioactivity than difunctionalized compounds. Moreover, the presence of bulky groups in the chemical structure of curcumin derivatives decreased bioactivity.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Republic of Panama.,Department of Biotechnology, Acharya Nagarjuna University, India.,Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yisett González
- Department of Biotechnology, Acharya Nagarjuna University, India.,Center for Molecular and Cellular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Republic of Panama
| | - Deborah Doens
- Department of Biotechnology, Acharya Nagarjuna University, India.,Center for Molecular and Cellular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Republic of Panama
| | - David E Stephens
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ricardo Santamaría
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Republic of Panama
| | - Enrique Murillo
- Department of Biochemistry, College of Natural, Exact Sciences and Technology, University of Panama, Republic of Panama
| | - Marcelino Gutiérrez
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Republic of Panama
| | - Patricia L Fernández
- Center for Molecular and Cellular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Republic of Panama
| | - K S Rao
- Center for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Republic of Panama
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Armando A Durant-Archibold
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Republic of Panama.,Department of Biochemistry, College of Natural, Exact Sciences and Technology, University of Panama, Republic of Panama
| |
Collapse
|
9
|
Ginsenoside improves physicochemical properties and bioavailability of curcumin-loaded nanostructured lipid carrier. Arch Pharm Res 2017; 40:864-874. [PMID: 28712035 DOI: 10.1007/s12272-017-0930-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to develop a ginsenoside-modified nanostructured lipid carrier (G-NLC) dispersion containing curcumin. The NLC was prepared by melt emulsification with slight modification process. Different G-NLC dispersion systems were prepared using lipid carrier matrix composed of ginsenoside, phosphatidylcholine, lysophosphatidylcholine, and hydrogenated bean oil. TEM image of the nanoparticles in the NLC dispersion showed core/shell structure, and there was corona-like layer surrounding the particles in the G-NLC. The mean particle size of G-NLC dispersion was in the range of about 300-500 nm and stayed submicron size up to 12 months. The in vitro release of curcumin was faster in pH 1.2 compared to pH 6.8 and it showed linear release pattern after lag time of 1 h. When the G-NLC dispersion was orally administered to rats, Cmax of the free curcumin was 15.2 and 32.3 ng/mL at doses of 50 and 100 mg/kg, respectively, while it was below quantification limit when curcumin was administered as of dispersion in distilled water. Based on these results, it is certain that ginsenoside modulated the NLC dispersion, leading to enduring shelf-life of the dispersion system and enhanced bioavailability. These results strongly suggest that ginsenoside holds a promising potential as a pharmaceutical excipient in the pharmaceutical industries to increase the utility of various bioactives.
Collapse
|
10
|
Botchlett R, Woo SL, Liu M, Pei Y, Guo X, Li H, Wu C. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233:R145-R171. [PMID: 28400405 PMCID: PMC5511693 DOI: 10.1530/joe-16-0580] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023]
Abstract
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Rachel Botchlett
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Pinnacle Clinical ResearchLive Oak, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Mengyang Liu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Ya Pei
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Xin Guo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Baylor College of MedicineHouston, USA
| | - Honggui Li
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| |
Collapse
|
11
|
An overview of structure-activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents. Future Med Chem 2017; 9:605-626. [PMID: 28394628 DOI: 10.4155/fmc-2016-0223] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.
Collapse
|
12
|
Arshad L, Jantan I, Bukhari SNA, Haque MA. Immunosuppressive Effects of Natural α,β-Unsaturated Carbonyl-Based Compounds, and Their Analogs and Derivatives, on Immune Cells: A Review. Front Pharmacol 2017; 8:22. [PMID: 28194110 PMCID: PMC5277008 DOI: 10.3389/fphar.2017.00022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
The immune system is complex and pervasive as it functions to prevent or limit infections in the human body. In a healthy organism, the immune system and the redox balance of immune cells maintain homeostasis within the body. The failure to maintain the balance may lead to impaired immune response and either over activity or abnormally low activity of the immune cells resulting in autoimmune or immune deficiency diseases. Compounds containing α,β-unsaturated carbonyl-based moieties are often reactive. The reactivity of these groups is responsible for their diverse pharmacological activities, and the most important and widely studied include the natural compounds curcumin, chalcone, and zerumbone. Numerous studies have revealed the mainly immunosuppressive and anti-inflammatory activities of the aforesaid compounds. This review highlights the specific immunosuppressive effects of these natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives on different types of immune cells of the innate (granulocytes, monocytes, macrophages, and dendritic cells) and adaptive (T cells, B cells, and natural killer cells) immune systems. The inhibitory effects of these compounds have been comprehensively studied on neutrophils, monocytes and macrophages but their effects on T cells, B cells, natural killer cells, and dendritic cells have not been well investigated. It is of paramount importance to continue generating experimental data on the mechanisms of action of α,β-unsaturated carbonyl-based compounds on immune cells to provide useful information for ensuing research to discover new immunomodulating agents.
Collapse
Affiliation(s)
- Laiba Arshad
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Md Areeful Haque
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Mapoung S, Pitchakarn P, Yodkeeree S, Ovatlarnporn C, Sakorn N, Limtrakul P. Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells. Chem Biol Interact 2015; 244:140-8. [PMID: 26689174 DOI: 10.1016/j.cbi.2015.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 01/06/2023]
Abstract
Curcumin analogs were synthesized and their multi-drug resistance (MDR) reversing properties were determined in human MDR leukemic (K562/Adr) cells. Four analogs, 1,7-bis-(3,4-dimethoxy-phenyl)-hepta-1,6-diene-3,5-dione (1J), 2,6-bis-(4-hydroxy-3-methoxy-benzylidene)-cyclohexanone (2A), 2,6-bis-(3,4-dihydroxy-benzylidene)-cyclohexanone (2F) and 2,6-bis-(3,4-dimethoxy-benzylidene)-cyclohexanone (2J) markedly increased the sensitivity of K562/Adr cells to paclitaxel (PTX) for 8-, 2-, 8- and 16- folds, respectively and vinblastine (Vin) for 5-, 3-, 12- and 30- folds, respectively. The accumulation of P-gp substrates, Calcein-AM, Rhodamine 123 and Doxorubicin, was significantly increased by 1J (up to 6-, 11- and 22- folds, respectively) and 2J (up to 7-, 12- and 17- folds, respectively). Besides 2A, 2F and 2J dramatically decreased P-gp expression in K562/Adr cells. These results could be summarized in the following way. Analog 1J inhibited only P-gp function, while 2A and 2F inhibited only P-gp expression. Interestingly, 2J exerts inhibition of both P-gp function and expression. The combination index (CI) of combination between 2J and PTX (0.09) or Vin (0.06) in K562/Adr cells indicated strong synergistic effects, which likely due to its MDR reversing activity. Moreover, these analogs showed less cytotoxicity to peripheral mononuclear cells (human) and red blood cells (human and rat) suggesting the safety of analogs for further animal and clinical studies.
Collapse
Affiliation(s)
- Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Natee Sakorn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Pornngarm Limtrakul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand.
| |
Collapse
|
14
|
Awad H, Das U, Dimmock J, El-Aneed A. Establishment of tandem mass spectrometric fingerprint of novel antineoplastic curcumin analogues using electrospray ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1307-1316. [PMID: 26405792 DOI: 10.1002/rcm.7222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/03/2015] [Accepted: 05/02/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Curcumin analogues are antineoplastic agents, designed based on the structure of the spice turmeric with structural modifications aiming at enhancing potency. The goal is to identify the common tandem mass spectrometric (MS/MS) behavior of 13 novel curcumin analogues. Such knowledge is critical for their biological assessment, including metabolite identification and pharmacokinetic evaluation. METHODS Both detection of the protonated molecules [M + H](+) of the synthesized compounds and determination of their exact molecular masses were achieved with hybrid quadrupole orthogonal time-of-flight mass spectrometry (QqTOF-MS). Low-energy collision-induced dissociation (CID)-MS/MS analysis was performed using triple quadrupole linear ion trap mass spectrometry (QqLIT-MS). Both instruments were equipped with an electrospray ionization (ESI) source. MS(3) and neutral loss experiments were performed using QqLIT-MS to confirm the genesis of the observed product ions. RESULTS Abundant [M + H](+) molecules were formed using the QqTOF-MS hybrid instrument with mass accuracies below 6 ppm. CID-MS/MS dissociation studies were centered on the piperidone ring of curcumin analogues; twelve common product ions have been identified from the fission of the various bonds within the piperidone moiety. There was a tendency for the formation of highly conjugated product ions, stabilized via resonance. The variety of the side-chain substituents at the nitrogen atom resulted in side-chain-specific product ions. CONCLUSIONS The ESI-CID-MS/MS analysis of curcumin analogues revealed a common fragmentation behavior of all tested compounds, which gave diagnostic product ions identified for each molecule. The established MS/MS behavior will be applied to determine metabolic by-products of curcumin analogues as well as to develop targeted identification/quantification methods within biological extracts.
Collapse
Affiliation(s)
- H Awad
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - U Das
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - J Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - A El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
15
|
|
16
|
Shi Y, Li C, Liu S, Liu Z, Zhu J, Yang J, Hu X. Facile synthesis of fluorescent carbon dots for determination of curcumin based on fluorescence resonance energy transfer. RSC Adv 2015. [DOI: 10.1039/c5ra13404h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A carbon dot-based fluorescence probe was designed for detecting curcumin via fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Ying Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Chunyan Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Shaopu Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Zhongfang Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jinghui Zhu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jidong Yang
- College of Chemical and Environmental Engineering
- Chongqing Three Gorges University
- Wanzhou
- China
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
17
|
Bukhari SNA, Lauro G, Jantan I, Bifulco G, Amjad MW. Pharmacological evaluation and docking studies of α,β-unsaturated carbonyl based synthetic compounds as inhibitors of secretory phospholipase A₂, cyclooxygenases, lipoxygenase and proinflammatory cytokines. Bioorg Med Chem 2014; 22:4151-61. [PMID: 24938495 DOI: 10.1016/j.bmc.2014.05.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022]
Abstract
Arachidonic acid and its metabolites have generated high level of interest among researchers due to their vital role in inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as synergistic anti-inflammatory effect. A series of novel α,β-unsaturated carbonyl based compounds were synthesized and evaluated for their inhibitory activity on secretory phospholipase A₂ (sPLA₂), cyclooxygenases (COX), soybean lipoxygenase (LOX) in addition to proinflammatory cytokines comprising IL-6 and TNF-α. Six α,β-unsaturated carbonyl based compounds (2, 3, 4, 12, 13 and 14) exhibited strong inhibition of sPLA₂ activity, with IC₅₀ values in the range of 2.19-8.76 μM. Nine compounds 1-4 and 10-14 displayed inhibition of COX-1 with IC₅₀ values ranging from 0.37 to 1.77 μM (lower than that of reference compound), whereas compounds 2, 10, 13 and 14 strongly inhibited the COX-2. The compounds 10-14 exhibited strong inhibitory activity against LOX enzyme. All compounds were evaluated for the inhibitory activities against LPS-induced TNF-α and IL-6 release in the macrophages. On the basis of screening results, five active compounds 3, 4, 12, 13 and 14 were found strong inhibitors of TNF-α and IL-6 release in a dose-dependent manner. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX and LOX inhibitory activities of the investigated compounds. Present findings increases the possibility that these α,β-unsaturated carbonyl based compounds might serve as beneficial starting point for the design and development of improved anti-inflammatory agents.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Gianluigi Lauro
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Muhammad Wahab Amjad
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|