1
|
Lasalo M, Jauffrais T, Georgel P, Matsui M. Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics. Mar Drugs 2024; 22:405. [PMID: 39330286 PMCID: PMC11433570 DOI: 10.3390/md22090405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The marine environment represents a formidable source of biodiversity, is still largely unexplored, and has high pharmacological potential. Indeed, several bioactive marine natural products (MNPs), including immunomodulators, have been identified in the past decades. Here, we review how this reservoir of bioactive molecules could be mobilized to develop novel anti-inflammatory compounds specially produced by or derived from marine microorganisms. After a detailed description of the MNPs exerting immunomodulatory potential and their biological target, we will briefly discuss the challenges associated with discovering anti-inflammatory compounds from marine microorganisms.
Collapse
Affiliation(s)
- Malia Lasalo
- Group Bioactivities of Natural Compounds and Derivatives (BIONA), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea 98845, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, Institut de Recherche pour le Développement (IRD), Centre Nationale de la Recherche Scientifique (CNRS), Université de la Réunion, Université de la Nouvelle-Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Philippe Georgel
- Team Neuroimmunology and Peptide Therapy, Biotechnologie et Signalisation Cellulaire, UMR 7242, University of Strasbourg, 67085 Strasbourg, France;
| | - Mariko Matsui
- Group Bioactivities of Natural Compounds and Derivatives (BIONA), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea 98845, New Caledonia;
| |
Collapse
|
2
|
Abdelkarem FM, Assaf HK, Mostafa YA, Mahdy A, Hussein MF, Ross SA, Mohamed NM. Antiviral activity of sulphated specialized metabolites from sea urchin Clypeaster humilis: in vitro and in silico studies. RSC Adv 2024; 14:14185-14193. [PMID: 38690113 PMCID: PMC11058476 DOI: 10.1039/d4ra01966k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Chemical investigations of the sea urchin Clypeaster humilis has led to separation of twelve compounds including one new sulfonic acid derivative (7R) tridec-1-en-7-yl hydrogen sulphate (1), first isolated from natural source, pyridine-3-yl methane sulfonate (2), and first isolated from marine organisms, boldine (12), in addition to nine known compounds (3-11), which were isolated for the first time from the genus Clypeaster. Their structures were elucidated based on spectroscopic analyses (1D and 2D NMR), HR-ESI-MS as well as comparison with the previously reported data. The antiviral activity of the crude extract and sulphated compounds were evaluated using MTT colorimetric assay against Coxsackie B4 virus. The crude extract and compound 1 showed very potent antiviral activity with a percentage of inhibition equal to 89.7 ± 0.53% and 86.1 ± 0.92%, respectively. Results of the molecular docking analysis of the isolated compounds within Coxsackie Virus B4 (COX-B4) X-ray crystal structure and quantum chemical calculation for three sulphated compounds are in a consistent adaptation with the in vitro antiviral results. The pharmacokinetic properties (ADME) of isolated compounds were determined.
Collapse
Affiliation(s)
- Fahd M Abdelkarem
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Hamdy K Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University Assiut 77771 Egypt
| | - Aldoushy Mahdy
- Department of Zoology, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Modather F Hussein
- Chemistry Department, Collage of Science, Jouf University P.O. Box 2014 Sakaka 72388 Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University Asyut Branch Assiut 71524 Egypt
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi Mississippi 38677 USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi Mississippi 38677 USA
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University Assiut 77771 Egypt
| |
Collapse
|
3
|
Karati D, Mukherjee S, Roy S. A Promising Drug Candidate as Potent Therapeutic Approach for Neuroinflammation and Its In Silico Justification of Chalcone Congeners: a Comprehensive Review. Mol Neurobiol 2024; 61:1873-1891. [PMID: 37801205 DOI: 10.1007/s12035-023-03632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Multiple genetic, environmental, and immunological variables cause neuropsychiatric disorders (NPDs). The induced inflammatory immune response is also connected to the severity and treatment outcomes of various NPDs. These reactions also significantly impact numerous brain functions such as GABAergic signaling and neurotransmitter synthesis through inflammatory cytokines and chemokines. Chalcones (1,3-diaryl-2-propen-1-ones) and their heterocyclic counterparts are flavonoids with various biological characteristics including anti-inflammatory activity. Several pure chalcones have been clinically authorized or studied in humans. Chalcones are favored for their diagnostic and therapeutic efficacy in neuroinflammation due to their tiny molecular size, easy manufacturing, and flexibility for changes to adjust lipophilicity ideal for BBB penetrability. These compounds reached an acceptable plasma concentration and were well-tolerated in clinical testing. As a result, they are attracting increasing attention from scientists. However, chalcones' therapeutic potential remains largely untapped. This paper is aimed at highlighting the causes of neuroinflammation, more potent chalcone congeners, their mechanisms of action, and relevant structure-activity relationships.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
4
|
Quarta S, Scoditti E, Zonno V, Siculella L, Damiano F, Carluccio MA, Pagliara P. In Vitro Anti-Inflammatory and Vasculoprotective Effects of Red Cell Extract from the Black Sea Urchin Arbacia lixula. Nutrients 2023; 15:nu15071672. [PMID: 37049512 PMCID: PMC10096920 DOI: 10.3390/nu15071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Sea urchins have emerged as an important source of bioactive compounds with anti-inflammatory and antioxidant properties relevant to human health. Since inflammation is a crucial pathogenic process in the development and progression of atherosclerosis, we here assessed the potential anti-inflammatory and vasculoprotective effects of coelomic red-cell methanolic extract of the black sea urchin Arbacia lixula in an in vitro model of endothelial cell dysfunction. Human microvascular endothelial cells (HMEC-1) were pretreated with A. lixula red-cell extract (10 and 100 μg/mL) before exposure to the pro-inflammatory cytokine tumor necrosis factor (TNF)-α. The extract was non-toxic after 24 h cell treatment and was characterized by antioxidant power and phenol content. The TNF-α-stimulated expression of adhesion molecules (VCAM-1, ICAM-1) and cytokines/chemokines (MCP-1, CCL-5, IL-6, IL-8, M-CSF) was significantly attenuated by A. lixula red-cell extract. This was functionally accompanied by a reduction in monocyte adhesion and chemotaxis towards activated endothelial cells. At the molecular level, the tested extract significantly counteracted the TNF-α-stimulated activation of the pro-inflammatory transcription factor NF-κB. These results provide evidence of potential anti-atherosclerotic properties of A. lixula red-cell extract, and open avenues in the discovery and development of dietary supplements and/or drugs for the prevention or treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Vincenzo Zonno
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | | | - Patrizia Pagliara
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
5
|
Ghelani H, Khursheed M, Adrian TE, Jan RK. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar Drugs 2022; 20:693. [PMID: 36355016 PMCID: PMC9699147 DOI: 10.3390/md20110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
6
|
Stomopneulactone D from long-spined sea urchin Stomopneustes variolaris: Anti-inflammatory macrocylic lactone attenuates cyclooxygenase-2 expression in lipopolysaccharide-activated macrophages. Bioorg Chem 2020; 103:104140. [DOI: 10.1016/j.bioorg.2020.104140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
|
7
|
Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflammatory marine compounds against cancer. Semin Cancer Biol 2020; 80:58-72. [PMID: 32070764 DOI: 10.1016/j.semcancer.2020.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advances in cancer immunotherapy confirm the crucial role of the immune system in cancer progression and treatment. Chronic inflammation and reduced immune surveillance are both features of the tumor microenvironment. Strategies aimed at reverting pro-tumor inflammation and stimulating the antitumor immune components are being actively searched, and the anticancer effects of many candidate drugs have been linked to their ability to modulate the immune system. Marine organisms constitute a rich reservoir of new bioactive molecules; some of them have already been exploited for pharmaceutical use, whereas many others are undergoing clinical or preclinical investigations for the treatment of different diseases, including cancer. In this review, we will discuss the immune-modulatory properties of marine compounds for their potential use in cancer prevention and treatment and as possible tools in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Wu X, Ji K, Wang H, Zhao Y, Jia J, Gao X, Zang B. MIP-1α induces inflammatory responses by upregulating chemokine receptor 1/chemokine receptor 5 and activating c-Jun N-terminal kinase and mitogen-activated protein kinase signaling pathways in acute pancreatitis. J Cell Biochem 2018; 120:2994-3000. [PMID: 30552706 DOI: 10.1002/jcb.27049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We aimed to investigate the association of macrophage inflammatory protein (MIP)-1α (CCL3) expression with the severity of acute pancreatitis (AP). METHODS The patients with AP were selected and divided into mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP) groups according to the severity of AP. The pancreatic acinar cell line Ar42 j was treated with cerulein to induce in vitro cell AP model. The expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and the activation of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) signaling pathway in stimulated or transfected Ar42 j cells were detected. RESULTS We detected that the upregulation of MIP-1α was associated with the severity of AP. Patients with SAP showed the highest MIP-1α contents, followed by MSAP, and, lastly, MAP. In cerulein-stimulated Ar42 j cells, the upregulation of MIP-1α, CCR5, TNF-α, and IL-6 was time dependent. In addition, in human recombinant MIP-1α treated Ar42 j cells, the upregulation of TNF-α and IL-6 was MIP-1α-dose-dependent. In contrast, we detected the inhibition of TNF-α and IL-6 in MIP-1α small interfering RNA (siRNA)-treated cells. Also, the activation of the JNK/p38 MAPK signaling pathway was induced and inhibited by human recombinant MIP-1α and MIP-1α siRNA, respectively. CONCLUSION These results suggested that MIP-1α might be used as a biomarker for the prognosis of AP severity. The MIP-1α-induced inflammatory responses in AP were mediated by TNF-α and IL-6, which were associated with the activation of the JNK/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xingmao Wu
- Intensive Care Unit, Shengjing Hospital, Medical University, Shenyang, Liaoning, China
| | - Kaiqiang Ji
- Intensive Care Unit, Shengjing Hospital, Medical University, Shenyang, Liaoning, China
| | - Haiyuan Wang
- Intensive Care Unit, Shengjing Hospital, Medical University, Shenyang, Liaoning, China
| | - Yang Zhao
- Intensive Care Unit, Shengjing Hospital, Medical University, Shenyang, Liaoning, China
| | - Jia Jia
- Intensive Care Unit, Shengjing Hospital, Medical University, Shenyang, Liaoning, China
| | - Xiaopeng Gao
- Intensive Care Unit, Shengjing Hospital, Medical University, Shenyang, Liaoning, China
| | - Bin Zang
- Intensive Care Unit, Shengjing Hospital, Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Lee S, Kim DC, Baek HY, Lee KD, Kim YC, Oh H. Anti-neuroinflammatory effects of tryptanthrin from Polygonum tinctorium Lour. in lipopolysaccharide-stimulated BV2 microglial cells. Arch Pharm Res 2018. [DOI: 10.1007/s12272-018-1020-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Zhao JW, Chen DS, Deng CS, Wang Q, Zhu W, Lin L. Evaluation of anti-inflammatory activity of compounds isolated from the rhizome of Ophiopogon japonicas. Altern Ther Health Med 2017; 17:7. [PMID: 28056939 PMCID: PMC5217338 DOI: 10.1186/s12906-016-1539-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Background Ophiopogon japonicas (L.f) Ker-Gawl has been used as a traditional Chinese medicine to cure acute and chronic inflammation and cardiovascular diseases including thrombotic diseases for thousands of years. Previous phytochemical studies showed that O. japonicus contained compounds with anti-inflammatory activity. The aim of this study was to identify and isolate compounds with anti-inflammatory activity from the rhizome of O. japonicas. Methods Compounds were isolated by various column chromatography and their structures were identified in terms of nuclear magnetic resonance spectrum (NMR) and mass spectrum (MS). To measure the anti-inflammatory effects of thirteen compounds in LPS-induced RAW 264.7 macrophage cells, we used the following methods: cell viability assay, nitric oxide assay, enzyme-linked immunosorbent assay, quantitative real-time PCR analysis and western blotting analysis. Results One new and twelve known compounds (mainly homoisoflavonoids) were extracted from O. japonicas, in which 4′-O-Demethylophiopogonanone E (10) was considered as a new compound, additionally, compounds 4-O-(2-Hydroxy-1- hydroxymethylethyl)-dihydroconiferyl alcohol (2) and 5,7-dihydroxy-6-methyl-3-(2′, 4′-dihydroxybenzyl) chroman-4-one (12) were isolated from the rhizome of O. japonicas for the first time. The isolated compounds Oleic acid (3), Palmitic acid (4), desmethylisoophiopogonone B [5,7-dihydroxy-3-(4′-hydroxybenzyl)-8- methyl- chromone] (5), 5,7-dihydroxy-6-methyl-3-(4′-hydroxybenzyl) chromone (7) and 10 significantly suppressed the production of NO in LPS-induced RAW 264.7 cells. Especially compound 10 showed the strongest effect against the production of the pro-inflammatory cytokine IL-1β and IL-6 with the IC50 value of 32.5 ± 3.5 μg/mL and 13.4 ± 2.3 μg/mL, respectively. Further analysis elucidated that the anti-inflammatory activity of compound 10 might be exerted through inhibiting the phosphorylation of ERK1/2 and JNK in MAPK signaling pathways to decrease NO and pro-inflammatory cytokines production. Conclusions Our results indicated that 4′-O-Demethylophiopogonanone E can be considered as a potential source of therapeutic medicine for inflammatory diseases.
Collapse
|