1
|
Amona FM, Pang Y, Gong X, Wang Y, Fang X, Zhang C, Chen X. Mechanism of PRRSV infection and antiviral role of polyphenols. Virulence 2024; 15:2417707. [PMID: 39432383 PMCID: PMC11497994 DOI: 10.1080/21505594.2024.2417707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is associated with the endemic outbreak of fever, anorexia, and abortion in pregnant sows, resulting in an enormous economic impact on the global swine industry. Current mainstream prophylactic agents and therapies have been developed to prevent PRRSV infection; however, they have limited efficacy. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. The identification of new PRRSV entry mediators, such as MYH9 and HSPA8; viral apoptotic mimicry; and TIM-induced macropinocytosis, to facilitate infection has led to a novel molecular understanding of the PRRSV infection mechanism, which can be utilized in the development of prophylactic agents and therapies for PRRSV infection. Polyphenols, complex chemical molecules with abundant biological activities derived from microorganisms and plants, have demonstrated great potential for controlling PRRSV infection via different mechanisms. To explore new possibilities for treating PRRSV infection with polyphenols, this review focuses on summarizing the pathogenesis of PRRSV, reviewing the potential antiviral mechanisms of polyphenols against PRRSV, and addressing the challenges associated with the widespread use of polyphenols.
Collapse
Affiliation(s)
- Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
2
|
Durmus E, Ozman Z, Ceyran IH, Pasin O, Kocyigit A. Chrysin Enhances Anti-Cancer Activity of Jurkat T Cell and NK-92 Cells Against Human Breast Cancer Cell Lines. Chem Biodivers 2024; 21:e202400806. [PMID: 38990829 DOI: 10.1002/cbdv.202400806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Chrysin, a naturally occurring flavonoid in plant and bee products, demonstrates notable biological activities, including anti-cancer effects. These properties are partially attributed to its capability to activate immune cells. This study focused on exploring the immunomodulatory potential of chrysin on NK-92 and Jurkat-T cells targeting breast cancer cells (BCC). Chrysin leads to activation of NK-92 and T cells facilitated by the addition of human recombinant IL-2 and PHA-M. The anti-cancer efficacy of chrysin on these immune cells was evaluated in a co-culture setup with EGF-stimulated MCF-7 and MDA-MB-231 cells. Findings revealed that chrysin notably increased the cytotoxicity of NK-92 and T cells towards MCF-7 and MDA-MB-231 cells, with the most significant impact observed on MCF-7 cells (20 %). The activation of NK-92 cells, marked by increased IFN-γ production and CD56 expression, correlated with enhanced secretion of cytokines. Additionally, the activation of these cells against BCC was linked with elevated levels of granzyme-B, TNF-α, and nitric oxide (NO). Similarly, the cytotoxic activation of Jurkat-T cells against BCC was characterized by increased production of granzyme-B, IL-2, and IFN-γ. Consequently, these results support the hypothesis that chrysin significantly contributes to the activation and functional enhancement of NK-92 and T-cells against two distinct BCC lines.
Collapse
Affiliation(s)
- Ezgi Durmus
- Department of Medical Biochemistry, Institute of Health Sciences, Bezmialem Vakif University, 34093, Istanbul, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Zeynep Ozman
- Department of Medical Biochemistry, Institute of Health Sciences, Bezmialem Vakif University, 34093, Istanbul, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Ibrahim Halil Ceyran
- Department of Molecular Biology and Genetics, Faculty of Science, Yildiz Technical University, Istanbul, Turkey
| | - Ozge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
- Traditional and Complementary Medicine Advanced Research Applications and Research Center, Bezmialem Vakif University, 34093, Istanbul, Turkey
| |
Collapse
|
3
|
Salah A, Mohammed El-Laban N, Mafiz Alam S, Shahidul Islam M, Abdalla Hussein M, Roshdy T. Optimization of Naringenin-loaded nanoparticles for targeting of Vanin-1, iNOS, and MCP-1 signaling pathway in HFD-induced obesity. Int J Pharm 2024; 654:123967. [PMID: 38438083 DOI: 10.1016/j.ijpharm.2024.123967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Naringenin, a natural dihydrochalcone flavonoid, exhibits diverse pharmacological properties. This study investigates the hypolipidemic effects of Nar-NPs on obese mice. The characteristics of Nar-NPs, including morphology, particle size, zeta potential, UV-vis, and FT-IR spectra, were examined. The anti-obesity properties of Nar-NPs were evaluated in obese rats, considering LD50, 1/20 LD50, and 1/50 LD50 for treatment preparation. Results indicated that synthesized Nar-NPs were uniform, spherical, and well-dispersed, with a size of 130.06 ± 1.98 nm and with a zeta potential of -25.6 ± 0.8 mV. Nar-NPs exhibited enhancement in the cumulative release of naringenin (56.87 ± 2.45 %) as compared to pure naringenin suspension 87.83 ± 1.84 % in 24 h of the study. The LD50 of Nar-NPs was determined as 412.5 mg/kg.b.w. HFD induced elevated glycemic, oxidative stress, and inflammatory biomarkers while reducing HDL-C, GSH, and superoxide dismutase (SOD) levels. Administration of Nar-NPs significantly mitigated body weight, glucose, insulin, leptin, TC, TG, SREBP1c, pAMPK, PPAR-α, as well as vanin-1, MCP-1, and iNOS mRNA gene expression. Histological investigations supported the biochemical and PCR findings. In a nutshell, the study suggests that the Nar-NPs could serve as a promising and viable pharmacological strategy for the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Nada Mohammed El-Laban
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Seikh Mafiz Alam
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohammed Abdalla Hussein
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Tamer Roshdy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| |
Collapse
|
4
|
Kristenson L, Badami C, Ljungberg A, Islamagic E, Tian Y, Xie G, Hussein BA, Pesce S, Tang KW, Thorén FB. Deletion of the TMEM30A gene enables leukemic cell evasion of NK cell cytotoxicity. Proc Natl Acad Sci U S A 2024; 121:e2316447121. [PMID: 38557174 PMCID: PMC11009675 DOI: 10.1073/pnas.2316447121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK) cell immunotherapy has gained attention as a promising strategy for treatment of various malignancies. In this study, we used a genome-wide CRISPR screen to identify genes that provide protection or susceptibility to NK cell cytotoxicity. The screen confirmed the role of several genes in NK cell regulation, such as genes involved in interferon-γ signaling and antigen presentation, as well as genes encoding the NK cell receptor ligands B7-H6 and CD58. Notably, the gene TMEM30A, encoding CDC50A-beta-subunit of the flippase shuttling phospholipids in the plasma membrane, emerged as crucial for NK cell killing. Accordingly, a broad range of TMEM30A knock-out (KO) leukemia and lymphoma cells displayed increased surface levels of phosphatidylserine (PtdSer). TMEM30A KO cells triggered less NK cell degranulation, cytokine production and displayed lower susceptibility to NK cell cytotoxicity. Blockade of PtdSer or the inhibitory receptor TIM-3, restored the NK cell ability to eliminate TMEM30A-mutated cells. The key role of the TIM-3 - PtdSer interaction for NK cell regulation was further substantiated by disruption of the receptor gene in primary NK cells, which significantly reduced the impact of elevated PtdSer in TMEM30A KO leukemic cells. Our study underscores the potential significance of agents targeting the interaction between PtdSer and TIM-3 in the realm of cancer immunotherapy.
Collapse
Affiliation(s)
- Linnea Kristenson
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Chiara Badami
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Angelica Ljungberg
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
| | - Erna Islamagic
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Yarong Tian
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 46, Sweden
| | - Guojiang Xie
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 46, Sweden
| | - Brwa Ali Hussein
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Silvia Pesce
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Dipartimento di Medicina Sperimentale, Università di Genova, Genoa16132, Italy
| | - Ka-Wei Tang
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 46, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg413 46, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg413 90, Sweden
| | - Fredrik B. Thorén
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| |
Collapse
|
5
|
K Kasat Y, Potale Y, Kumar A, Jamwal V. Exploring the Pharmacological Potential of Naringenin and its Nanoparticles: A Review on Bioavailability and Solubility Enhancement Strategies. BIO WEB OF CONFERENCES 2024; 86:01030. [DOI: 10.1051/bioconf/20248601030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Citrus fruits are rich in differentflavonoid compounds. One of them is naringenin, which exhibits a huge variety of pharmacological benefits such as anti-inflammatory, antioxidant, anticancer, and cardioprotective properties. Butpoor bioavailability and solubility are the main reason for its limited clinical application. To overcome these limitations, several strategies, including complexation, formulation, and nanotechnology-based approaches, have been developed to boost its solubility and bioavailability.Among these approaches, nanoparticle-based delivery systems have shown remarkable potential in improving the therapeutic efficacy of naringenin. This review is based on the recent advances in the development of naringenin nanoparticles and their incorporation into drug delivery systems. We discuss over the numerous methods used to make naringenin more soluble and bioavailable, such as complexing it with cyclodextrins, combining it with lipids and surfactants, and adding it to polymeric nanoparticles. We also highlight the In-vivo and In-vitro studies conducted to check the efficacy of naringenin nanoparticles in various disease models. Finally, we conclude that the development of naringenin nanoparticles and their incorporation into drug delivery systems can be a promising strategy for the efficient delivery of naringenin, ultimately leading to improved health outcomes.
Collapse
|
6
|
Yu J, Shi H, Song K, Yang Y, Li X, Peng L, Fu B, Yi P. Naringenin Improves Innate Immune Suppression after PRRSV Infection by Reactivating the RIG-I-MAVS Signaling Pathway, Promoting the Production of IFN-I. Viruses 2023; 15:2172. [PMID: 38005850 PMCID: PMC10674737 DOI: 10.3390/v15112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been prevalent for nearly forty years since it was first reported. It has been one of the major diseases jeopardizing the healthy development of the world swine industry, as well as causing great economic losses to the industry's economic development. Furthermore, no way has been found to combat the disease due to the immunosuppressive properties of its pathogen porcine reproductive and respiratory syndrome virus (PRRSV) infection. We previously examined the mRNA expression of IFN-I in PRRSV-infected Marc-145 cells at different time periods using qRT-PCR, and found that the mRNA expression of IFN-I in the late stage of PRRSV infection showed suppression. Naringenin is a flavonoid found in citrus fruits and has a very wide range of pharmacological activities. Therefore, the aim of the present study was to investigate the modulatory effect of naringenin on the suppressed innate immune response after PRRSV infection. The expression of IFN-I, IL-10, and ISGs in the late stage of PRRSV infection was examined using qRT-PCR, and the results showed that naringenin improved the expression of antiviral cytokines suppressed by PRRSV infection. Further results showed that naringenin treatment significantly up-regulated the expression of proteins related to the RIG-I-MAV immune signaling pathway, and that naringenin could not significantly activate the RIG-I-MAVS signaling pathway after the addition of the RIG-I inhibitor Cyclo. Overall, these data demonstrated that naringenin could improve the innate immune response suppressed by PRRSV infection by modulating the RIG-I-MAVS signaling pathway. Therefore, our study will provide a theoretical basis for the development of naringenin as a drug against immunosuppressive viral infectious disease infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.Y.); (H.S.); (K.S.); (Y.Y.); (X.L.); (L.P.); (B.F.)
| |
Collapse
|
7
|
Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, Mohammadkhani N, Pereira-Silva M, Kasaii MS, Nouri-Majd S, Mueller AL, Veiga FJB, Paiva-Santos AC, Shakibaei M. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci 2022; 305:120752. [PMID: 35779626 DOI: 10.1016/j.lfs.2022.120752] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Naringenin is an important phytochemical which belongs to the flavanone group of polyphenols, and is found mainly in citrus fruits like grapefruits and others such as tomatoes and cherries plus medicinal plants derived food. Available evidence demonstrates that naringenin, as herbal medicine, has important pharmacological properties, including anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. Collected data from in vitro and in vivo studies show the inactivation of carcinogens after treatment with pure naringenin, naringenin-loaded nanoparticles, and also naringenin in combination with anti-cancer agents in various malignancies, such as colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancer, bladder neoplasms, gastric cancer, and osteosarcoma. Naringenin inhibits cancer progression through multiple mechanisms, like apoptosis induction, cell cycle arrest, angiogenesis hindrance, and modification of various signaling pathways including Wnt/β-catenin, PI3K/Akt, NF-ĸB, and TGF-β pathways. In this review, we demonstrate that naringenin is a natural product with potential for the treatment of different types of cancer, whether it is used alone, in combination with other agents, or in the form of the naringenin-loaded nanocarrier, after proper technological encapsulation.
Collapse
Affiliation(s)
- Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Department of Biology, Yadegar-e-Imam Khomeini Shahr-e-Rey Branch, Islamic Azad University, Tehran 1815163111, Iran
| | - Mohammed Bhia
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Huda Fatima Rajani
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E0T5, Canada
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SKS7N 5B4, Canada
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Sadat Kasaii
- Department of Nutrition Research, Department of Community Nutrition, National Nutrition and Food Technology Research Institute (WHO Collaborating Center); and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6117, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Francisco J B Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany.
| |
Collapse
|
8
|
Rauf A, Shariati MA, Imran M, Bashir K, Khan SA, Mitra S, Emran TB, Badalova K, Uddin MS, Mubarak MS, Aljohani ASM, Alhumaydhi FA, Derkho M, Korpayev S, Zengin G. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31025-31041. [PMID: 35119637 DOI: 10.1007/s11356-022-18754-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Though the incidence of several cancers in Western societies is regulated wisely, some cancers such as breast, lung, and colorectal cancer are currently rising in many low- and middle-income countries due to increased risk factors triggered by societal and development problems. Surgery, chemotherapy, hormone, radiation, and targeted therapies are examples of traditional cancer treatment approaches. However, multiple short- and long-term adverse effects may also significantly affect patient prognosis depending on treatment-associated clinical factors. More and more research has been carried out to find new therapeutic agents in natural products, among which the bioactive compounds derived from plants have been increasingly studied. Naringin and naringenin are abundantly found in citrus fruits, such as oranges and grapefruits. A variety of cell signaling pathways mediates their anti-carcinogenic properties. Naringin and naringenin were also documented to overcome multidrug resistance, one of the major challenges to clinical practice due to multiple defense mechanisms in cancer. The effective parameters underlying the anticancer effects of naringenin and naringin include GSK3β inactivation, suppression of the gene and protein activation of NF-kB and COX-2, JAK2/STAT3 downregulation, downregulation of intracellular adhesion molecules-1, upregulation of Notch1 and tyrocite-specific genes, and activation of p38/MAPK and caspase-3. Thus, this review outlines the potential of naringin and naringenin in managing different types of cancers.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management, The First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russia
| | - Muhammad Imran
- Department of food science and technology, University of Narowal-Pakistan, Pakistan
- Food, nutrition and lifestyle Unit, King Fahed Medical Research Center, Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Kashif Bashir
- Department of Microbiology and Biotechnology, Abasyan University Peshawar, Peshawar, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Kamala Badalova
- General Toxicological Chemistry Department, Azerbaijan Medical University Azerbaijan, Baku, Azerbaijan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Abdullah S M Aljohani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Marina Derkho
- Institute of Veterinary Medicine, South-Ural State Agrarian University, Chelyabinsk Region, 13 Gagarin St, Troitsk, 454700, Russian Federation
| | - Serdar Korpayev
- Biotechnology Institute, Ankara University, 06135, Ankara, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| |
Collapse
|
9
|
Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol 2021. [DOI: 10.1111/sji.13106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Limin Han
- Department of Pathophysiology Zunyi Medical University Zunyi China
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Qiang Fu
- Organ Transplantation Center Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Chuan Deng
- Department of Neurology People’s Hospital of Changshou Chongqing Chongqing China
| | - Li Luo
- Department of Forensic Medicine Zunyi Medical University Zunyi China
| | - Tengxiao Xiang
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Hailong Zhao
- Department of Pathophysiology Zunyi Medical University Zunyi China
| |
Collapse
|
10
|
Murti Y, Semwal BC, Goyal A, Mishra P. Naringenin Scaffold as a Template for Drug Designing. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190617144652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural products provide cornucopia of heterocyclic systems. The nucleus of 2-
phenyl chromane is one of the important and well-known heterocycles found in the natural
products. Naringenin, a plant-derived flavanone (2-phenyl chroman-4-one) belongs to the family
of flavanoids. It possesses diverse biologic activities such as antidiabetic, antiatherogenic,
antidepressant, antiandrogenic, antiestrogenic, immunomodulatory, antitumor, antimicrobial,
anti-inflammatory, antiviral, hypolipidemic, antihypertensive, antioxidant, neuroprotective,
anti-obesity, anti-Alzheimer, and memory enhancer activity. It has the potential to be used as
an active pharmacophore. There have been reports of a number of molecular mechanisms
underlying their beneficial activities. With emerging interest in traditional medicine and
exploiting their potential based on a variety of health care systems, naringenin literature was
thought to be explored. Further, this review aims to provide a new era of flavonoid-based
therapeutic agents with new insights into naringenin and its derivatives as a lead compound
in drug design.
Collapse
Affiliation(s)
- Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura N.H.#2, Mathura-Delhi Road, P.O. Chaumuhan, Mathura-281 406, India
| | - Bhupesh Chander Semwal
- Institute of Pharmaceutical Research, GLA University, Mathura N.H.#2, Mathura-Delhi Road, P.O. Chaumuhan, Mathura-281 406, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura N.H.#2, Mathura-Delhi Road, P.O. Chaumuhan, Mathura-281 406, India
| | - Pradeep Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura N.H.#2, Mathura-Delhi Road, P.O. Chaumuhan, Mathura-281 406, India
| |
Collapse
|
11
|
Yanagimichi M, Nishino K, Sakamoto A, Kurodai R, Kojima K, Eto N, Isoda H, Ksouri R, Irie K, Kambe T, Masuda S, Akita T, Maejima K, Nagao M. Analyses of putative anti-cancer potential of three STAT3 signaling inhibitory compounds derived from Salvia officinalis. Biochem Biophys Rep 2020; 25:100882. [PMID: 33392396 PMCID: PMC7772785 DOI: 10.1016/j.bbrep.2020.100882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 12/05/2022] Open
Abstract
The extract of Salvia officinalis (Common Sage) exhibited inhibitory activity of STAT3 signal after screening of several plants extracts using the STAT3-responsive reporter system. Cirsiliol, luteolin, and carnosol were identified from the methanol extract of Silvia officinalis as inhibitors of STAT3 signaling and the effects of these three compounds on STAT3 protein or growth inhibition on cancer cells was compared. Luteolin at the dose of 90 μM clearly suppressed the phosphorylation of STAT3 induced by IL-6, while carnosol was prone to decrease total STAT3 proteins at high doses (>90 μM). Cirsiliol had almost no effect. Since the three compounds exhibited similar concentration-dependent suppression patterns in the reporter assay except for cirsiliol became plateau beyond 30 μM, these compounds appeared to function as STAT3 inhibitory factors in different ways. The direct anti-proliferative activity of three compounds was examined with or without the anti-cancer drug gefitinib using HepG2 and A549 cells. The anti-proliferative effect of the three compounds was additively enhanced by gefitinib. At the doses of 3.6 μM, statistically significant suppression of proliferation was observed in HepG2 cells only by cirsiliol among the three compounds in the absence of gefitinib but all three compounds were prone to suppress the proliferation of HepG2 cells and A549 cells dose-dependently although cirsiliol showed a modest dose-dependency and this suppression of proliferation was enhanced by the addition of gefitinib. Cirsiliol, a dimethyoxylated flavone, activated the natural killer activity of KHYG-1 cells against erythroleukemia K562 cells like a hexamethoxylated flavone, nobiletin, suggesting that it may also have an indirect anti-cancer potential through activation of NK cells. These results shed light on the putative anti-cancer potential of Salvia officinalis. Carnosol, luteolin and cirsiliol were identified as STAT3 signal inhibitors in S. officinalis. Cirsiliol inhibited the STAT3-responsive reporter expression at 7.5 μM but showed low dose-dependency at higher doses. Cirsiliol at 90 μM showed almost no effect on phosphorylation of STAT3 and weakly suppressed total STAT3. Cirsiliol exhibited anti-proliferative activity at 3.6 μM against HepG2 cells and A549 cells but showed low dose-dependency. Cirsiliol activated NK cells by stimulating exocytosis of granules for cytolysis.
Collapse
Affiliation(s)
- Maho Yanagimichi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Akiho Sakamoto
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryusei Kurodai
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Kojima
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Nozomu Eto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Riadh Ksouri
- Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), BP 901, 2050, Hammam-lif, Tunisia
| | - Kazuhiro Irie
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Taiho Kambe
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Seiji Masuda
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Toru Akita
- Nippon Shinyaku CO., LTD., Kyoto, 601-8550, Japan
| | | | - Masaya Nagao
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
12
|
Namdeo AG, Boddu SHS, Amawi H, Ashby CR, Tukaramrao DB, Trivedi P, Babu RJ, Tiwari AK. Flavonoids as Multi-Target Compounds: A Special Emphasis on their Potential as Chemo-adjuvants in Cancer Therapy. Curr Pharm Des 2020; 26:1712-1728. [PMID: 32003663 DOI: 10.2174/1381612826666200128095248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Flavonoids are low molecular weight, polyphenolic phytochemicals, obtained from secondary metabolism of various plant compounds. They have a spectrum of pharmacological efficacies, including potential anticancer efficacy. Natural flavonoids are present in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. Flavonoids can attenuate or inhibit the initiation, promotion and progression of cancer by modulating various enzymes and receptors in diverse pathways that involve cellular proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis. Furthermore, in vitro, flavonoids have been shown to reverse multidrug resistance when used as chemo-adjuvants. Flavonoids (both natural and synthetic analogues) interact with several oncogenic targets through dependent and independent mechanisms to mediate their anticancer efficacy in different types of cancer cells.
Collapse
Affiliation(s)
- Ajay G Namdeo
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Haneen Amawi
- Department of Pharmacy practice, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, United States
| | - Diwakar B Tukaramrao
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43606, United States
| | - Piyush Trivedi
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43606, United States
| |
Collapse
|
13
|
Alberca RW, Teixeira FME, Beserra DR, de Oliveira EA, Andrade MMDS, Pietrobon AJ, Sato MN. Perspective: The Potential Effects of Naringenin in COVID-19. Front Immunol 2020; 11:570919. [PMID: 33101291 PMCID: PMC7546806 DOI: 10.3389/fimmu.2020.570919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), was declared a pandemic by the World Health Organization in March 2020. Severe COVID-19 cases develop severe acute respiratory syndrome, which can result in multiple organ failure, sepsis, and death. The higher risk group includes the elderly and subjects with pre-existing chronic illnesses such as obesity, hypertension, and diabetes. To date, no specific treatment or vaccine is available for COVID-19. Among many compounds, naringenin (NAR) a flavonoid present in citrus fruits has been investigated for antiviral and anti-inflammatory properties like reducing viral replication and cytokine production. In this perspective, we summarize NAR potential anti-inflammatory role in COVID-19 associated risk factors and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ricardo Wesley Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Danielle Rosa Beserra
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Emily Araujo de Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Milena Mary de Souza Andrade
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
15
|
Antidepressant Potential of Lotus corniculatus L. subsp. corniculatus: An Ethnobotany Based Approach. Molecules 2020; 25:molecules25061299. [PMID: 32178424 PMCID: PMC7144109 DOI: 10.3390/molecules25061299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/11/2023] Open
Abstract
As a Turkish traditional medicinal plant, aerial parts of Lotus corniculatus L. subsp. corniculatus (Fabaceae) are used as a painkiller, antihemoroidal, diuretic and sedative. In this study, the antidepressant potential of the plant has been attempted to clarify. Extracts with water, n-Hexane, ethyl acetate, and methanol were prepared respectively from the aerial parts. Antidepressant activity of the extracts were researched by using three different in vivo test models namely a tail suspension test, antagonism of tetrabenazine-induced hypothermia, ptosis, and suppression of locomotor activity and forced swimming test on male BALB/c mice and in vitro monoamine oxidase (MAO)-A and B inhibition assays. The results were evaluated through comparing with control and reference groups, and then active compounds of the active extract have been determined. Bioassay-guided fractionation of active fraction led to the isolation of three compounds and structures of the compounds were elucidated by spectroscopic methods. The data of this study demonstrate that the MeOH extract of the aerial parts of the plant showed remarkable in vivo antidepressant effect and the isolated compounds medicarpin-3-O-glucoside, gossypetin-3-O-glucoside and naringenin-7-O-glucoside (prunin) from the active sub-fractions could be responsible for the activity. Further mechanistic and toxicity studies are planned to develop new antidepressant-acting drugs.
Collapse
|
16
|
Salviati E, Ciaglia E, Sommella E, Montella F, Bertamino A, Ostacolo C, Parrino B, Rubino R, Vecchione C, Puca A, Novellino E, Campiglia P. Immunomodulatory activity of Humulus lupulus bitter acids fraction: Enhancement of natural killer cells function by NKp44 activating receptor stimulation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Yerlikaya S, Baloglu MC, Diuzheva A, Jekő J, Cziáky Z, Zengin G. Investigation of chemical profile, biological properties of Lotus corniculatus L. extracts and their apoptotic-autophagic effects on breast cancer cells. J Pharm Biomed Anal 2019; 174:286-299. [DOI: 10.1016/j.jpba.2019.05.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/29/2023]
|
18
|
Abdel-Magied N, Shedid SM. The effect of naringenin on the role of nuclear factor (erythroid-derived 2)-like2 (Nrf2) and haem oxygenase 1 (HO-1) in reducing the risk of oxidative stress-related radiotoxicity in the spleen of rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:788-795. [PMID: 30843661 DOI: 10.1002/tox.22745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
The present study was to evaluate the radiomitigative effect of naringenin (NRG) on the modulation of ionizing radiation (IR)-induced spleen injury. Rats were exposed to 12 Gy (3Gy/two times/week). NRG (50mg/Kg), was orally given one hour after the first radiation dose, and daily continued during the irradiation period. Rats were sacrificed 1 day after the last dose of radiation. NRG showed a significant decrease of malondialdehyde, hydrogen peroxide with a significant elevation of superoxide dismutase, catalase and glutathione peroxidase activities and glutathione content. Moreover, NRG confirmed the intracellular defense mechanisms through activation of nuclear factor (erythroid-derived 2)-like2 (Nrf2) and haem oxygenase-1 (HO-1) levels and their protein expression. In addition, NRG deactivated the nuclear factor-κB (NF-κB) and reduced the pro-inflammatory cytokines. Further, NRG showed positive modulation in the haematological values (WBCs, RBCs, Hb, Hct% and PLt). In conclusion, these results suggested that NRG reversed the IR-induced redox-imbalance in the rat spleen.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
19
|
Microbial transformation of naringenin derivatives. Arch Pharm Res 2017; 40:720-726. [PMID: 28612118 DOI: 10.1007/s12272-017-0916-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Microbial transformations of (±)-7-O-prenylnaringenin (7-PN, 1) and (±)-7-O-allylnaringenin (7-AN, 2) have isolated four metabolites (3-6). Structures of these novel compounds were identified as 5,4'-dihydroxy-7-O-[(2E)-4-hydroxy-3-methyl-2-buten-1-yl]flavanone (3), 5,4'-dihydroxy-7-O-(2,3-dihdroxy-3-methylbutyl)flavanone (4), 5,4'-dihydroxy-7-O-(2,3-dihdroxypropyl)flavanone (5), and 5-O-β-D-glucopyranosyl-7-O-allyl-4'-hydroxyflavanone (6) based on spectroscopy. Compounds 1-6 were evaluated for their radical scavenging capacity using DPPH (2,2-diphenyl-1-picrylhydrazyl). The derivatives 3-6 exhibited more potent antioxidant activity than their corresponding substrates 1 and 2.
Collapse
|
20
|
Demoulin B, Cook WJ, Murad J, Graber DJ, Sentman ML, Lonez C, Gilham DE, Sentman CL, Agaugue S. Exploiting natural killer group 2D receptors for CAR T-cell therapy. Future Oncol 2017; 13:1593-1605. [PMID: 28613086 DOI: 10.2217/fon-2017-0102] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.
Collapse
Affiliation(s)
- Benjamin Demoulin
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - W James Cook
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | | | - David J Graber
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Marie-Louise Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Caroline Lonez
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - David E Gilham
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - Charles L Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Sophie Agaugue
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| |
Collapse
|
21
|
Dietary flavonoids and modulation of natural killer cells: implications in malignant and viral diseases. J Nutr Biochem 2017; 46:1-12. [PMID: 28182964 DOI: 10.1016/j.jnutbio.2017.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/30/2016] [Accepted: 01/14/2017] [Indexed: 01/08/2023]
Abstract
Flavonoids are a large group of secondary plant metabolites present in the diet with numerous potentially health-beneficial biological activities. In addition to antioxidant, anti-inflammatory, cholesterol-lowering, and many other biological functions reported in the literature, flavonoids appear to inhibit cancer cell proliferation and stimulate immune function. Although the immunomodulatory potential of flavonoids has been intensively investigated, only little is known about their impact on natural killer (NK) cells. Enhancing NK cell activity, however, would have strong implications for a possible clinical use of flavonoids, especially in the treatment and prevention of diseases like cancer and viral infections. Therefore, the purpose of this review is to summarize the currently available information on NK cell modulation by flavonoids. Many of the structurally diverse flavonoids stimulate NK cell activity and have thus great potential as diet-derived immune-modulatory chemopreventive agents and may even serve as therapeutic compounds or lead structures for the development of novel drugs for the treatment of both malignant and viral diseases.
Collapse
|
22
|
Maatouk M, Elgueder D, Mustapha N, Chaaban H, Bzéouich IM, Loannou I, Kilani S, Ghoul M, Ghedira K, Chekir-Ghedira L. Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity. Cell Stress Chaperones 2016; 21:1101-1109. [PMID: 27623863 PMCID: PMC5083678 DOI: 10.1007/s12192-016-0734-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/15/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Naringenin is one of the most popular flavonoids derived from citrus. It has been reported to be an effective anti-inflammatory compound. Citrus fruit may be used raw, cooked, stewed, or boiled. The present study was conducted to investigate the effect of thermal processes on naringenin in its immunomodulatory and cellular antioxidant activities. The effects of flavonoids on B and T cell proliferation were assessed on splenocytes stimulated or not with mitogens. However, their effects on cytotoxic T lymphocyte (CTL) and natural killer (NK) activities were assessed in splenocytes co-incubated with target cells. The amount of nitric oxide production and the lysosomal enzyme activity were evaluated in vitro on mouse peritoneal macrophages. Cellular antioxidant activity in splenocytes and macrophages was determined by measuring the fluorescence of the dichlorofluorescin (DCF). Our findings revealed that naringenin induces B cell proliferation and enhances NK activity. The highest concentration of native naringenin exhibits a significant proliferation of T cells, induces CTL activity, and inhibits cellular oxidation in macrophages. Conversely, it was observed that when heat-processed, naringenin improves the cellular antioxidant activity in splenocytes, increases the cytotoxic activity of NK cells, and suppresses the cytotoxicity of T cells. However, heat treatment maintains the anti-inflammatory potency of naringenin.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Cell Proliferation/drug effects
- Flavanones/pharmacology
- Humans
- K562 Cells
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lipopolysaccharides/toxicity
- Lysosomes/drug effects
- Lysosomes/enzymology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Nitric Oxide/metabolism
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Temperature
Collapse
Affiliation(s)
- Mouna Maatouk
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Dorra Elgueder
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Nadia Mustapha
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Hind Chaaban
- Laboratoire d'ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Imen Mokdad Bzéouich
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Irina Loannou
- Laboratoire d'ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Soumaya Kilani
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Mohamed Ghoul
- Laboratoire d'ingénierie des Biomolécules, ENSAIA-INPL, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Kamel Ghedira
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Leila Chekir-Ghedira
- Unité des Substances Naturells Bioactives et Biotechnologie, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia.
- Laboratoire de Biologie Moléculaire et Cellulaire, Faculté de Médecine Dentaire de Monastir, Université de Monastir, Rue Avicenne, Monastir, 5000, Tunisia.
| |
Collapse
|