1
|
Gunawan M, Boonkanokwong V. Current applications of solid lipid nanoparticles and nanostructured lipid carriers as vehicles in oral delivery systems for antioxidant nutraceuticals: A review. Colloids Surf B Biointerfaces 2024; 233:113608. [PMID: 37925866 DOI: 10.1016/j.colsurfb.2023.113608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Antioxidant nutraceuticals can be found in several dietary sources and have been utilized for various medical benefits including health promotion, disease prevention, and support for treatment of acute and/or chronic diseases. Nonetheless, there are some limitations in delivering antioxidants via oral administration such as low solubility and permeability, pH and enzyme degradation, and instability of the compounds along the gastrointestinal tract leading to low bioavailability. In order to tackle these challenges, the utilization of lipid nanoparticles has numerous advantages to the escalating delivery system of antioxidants in nutraceuticals across the gastrointestinal tract barrier. Nowadays, several types of lipid nanoparticles can be used in antioxidant nutraceutical delivery systems through the oral route, namely solid lipid nanoparticles and nanostructured lipid carriers. This review article aims to provide notable information on the importance and applications of lipid nanoparticles in antioxidant delivery systems from nutraceuticals by an oral route. The mechanism in enhancing antioxidant compound transport across the gastrointestinal tract can occur by elevating loading capacity, improving chemical and physical stability, and increasing its bioavailability. To date, lipid nanoparticle vehicles have been developed to improve the delivery of antioxidant compounds to enhance bioavailability via oral routes. Lipid nanoparticles have remarkable benefits in delivering antioxidant nutraceuticals via oral administration. Hence, scale-up and commercialization of antioxidant nutraceutical-loaded lipid nanoparticles have been a potential technology in recent years. Subsequently, several vegetable and natural oils with antioxidant activity can also be utilized for nanoparticle formulation lipid components to increase nutraceuticals' antioxidant properties and bioavailability.
Collapse
Affiliation(s)
- Maxius Gunawan
- Graduate Program of Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Liu WY, Hsieh YS, Ko HH, Wu YT. Formulation Approaches to Crystalline Status Modification for Carotenoids: Impacts on Dissolution, Stability, Bioavailability, and Bioactivities. Pharmaceutics 2023; 15:pharmaceutics15020485. [PMID: 36839810 PMCID: PMC9965060 DOI: 10.3390/pharmaceutics15020485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Carotenoids, including carotenes and xanthophylls, have been identified as bioactive ingredients in foods and are considered to possess health-promoting effects. From a biopharmaceutical perspective, several physicochemical characteristics, such as scanty water solubility, restricted dissolution, and susceptibility to oxidation may influence their oral bioavailability and eventually, their effectiveness. In this review, we have summarized various formulation approaches that deal with the modification of crystalline status for carotenoids, which may improve their physicochemical properties, oral absorption, and biological effects. The mechanisms involving crystalline alteration and the typical methods for examining crystalline states in the pharmaceutical field have been included, and representative formulation approaches are introduced to unriddle the mechanisms and effects more clearly.
Collapse
Affiliation(s)
- Wan-Yi Liu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Shan Hsieh
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-H.K.); (Y.-T.W.); Tel.: +886-7-3121101 (ext. 2643) (H.-H.K.); +886-7-3121101 (ext. 2254) (Y.-T.W.)
| | - Yu-Tse Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-H.K.); (Y.-T.W.); Tel.: +886-7-3121101 (ext. 2643) (H.-H.K.); +886-7-3121101 (ext. 2254) (Y.-T.W.)
| |
Collapse
|
3
|
Aung WT, Khine HEE, Chaotham C, Boonkanokwong V. Production, physicochemical investigations, antioxidant effect, and cellular uptake in Caco-2 cells of the supersaturable astaxanthin self-microemulsifying tablets. Eur J Pharm Sci 2022; 176:106263. [PMID: 35853596 DOI: 10.1016/j.ejps.2022.106263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
The purpose of this study was to develop astaxanthin (AST)-loaded self-microemulsifying drug delivery system (SMEDDS) tablets and evaluate their physicochemical and biological properties. The optimized liquid (L)-AST SMEDDS formulation was composed of rice bran oil (33.67%), Kolliphor® RH 40 (34.70%), and Span® 20 (31.63%). Two types of hydrophilic polymers (hydroxypropyl methylcellulose, HPMC, and polyvinyl alcohol, PVA) solutions were selected as a precipitation inhibitor for AST and incorporated into L-AST SMEDDS to obtain supersaturation and enhance dissolution of AST. The formulation was then mixed with microcrystalline cellulose and subsequently transformed to solid S-AST SMEDDS particles using a spray dryer prior to direct compression into tablets. The HPMC AST SMEDDS tablet and PVA AST SMEDDS tablet were characterized for their physicochemical properties, dissolution, AST release, and stabilities. Moreover, the cellular uptake and antioxidant effect of AST SMEDDS tablets were evaluated in Caco-2 cells. With good tablet characters, both HPMC AST SMEDDS tablet and PVA AST SMEDDS tablet dissolution profiles were improved compared to that of raw AST. While initially less than 50% of AST released from HPMC AST SMEDDS tablet and PVA AST SMEDDS tablet in pH 1.2 medium, after 6 h more than 98% of AST releases in pH 6.8 were achieved which was similar to L-AST SMEDDS profile. Cellular antioxidant activities of L-AST SMEDDS and HPMC AST SMEDDS tablet & PVA AST SMEDDS tablet were significantly greater than pure AST powder. HPMC AST SMEDDS tablet showed better uptake and deeper penetration through Caco-2 cells than that in PVA AST SMEDDS tablet and pure powder. Our successfully developed AST SMEDDS tablets were demonstrated to be a potential platform to deliver highly lipophilic AST and improve permeation and bioavailability.
Collapse
Affiliation(s)
- Wai Thet Aung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok 10330, Thailand
| | - Hnin Ei Ei Khine
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
The Astaxanthin Aggregation Pattern Greatly Influences Its Antioxidant Activity: A Comparative Study in Caco-2 Cells. Antioxidants (Basel) 2020; 9:antiox9020126. [PMID: 32024215 PMCID: PMC7070916 DOI: 10.3390/antiox9020126] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/27/2023] Open
Abstract
Astaxanthin is an excellent antioxidant that can form unstable aggregates in biological or artificial systems. The changes of astaxanthin properties caused by molecular aggregation have gained much attention recently. Here, water-dispersible astaxanthin H- and J-aggregates were fabricated and stabilized by a natural DNA/chitosan nanocomplex (respectively noted as H-ADC and J-ADC), as evidenced by ultraviolet and visible spectrophotometry, Fourier transform infrared spectroscopy, and Raman spectroscopy. Compared with J-ADC, H-ADC with equivalent astaxanthin loading capacity and encapsulation efficiency showed smaller particle size and similar zeta potential. To explore the antioxidant differences between astaxanthin H- and J-aggregates, H-ADC and J-ADC were subjected to H2O2-pretreated Caco-2 cells. Compared with astaxanthin monomers and J-aggregates, H-aggregates showed a better cytoprotective effect by promoting scavenging of intracellular reactive oxygen species. Furthermore, in vitro 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radical scavenging studies confirmed a higher efficiency of H-aggregates than J-aggregates or astaxanthin monomers. These findings give inspiration to the precise design of carotenoid aggregates for efficient utilization.
Collapse
|
5
|
Hu F, Liu W, Yan L, Kong F, Wei K. Optimization and characterization of poly(lactic-co-glycolic acid) nanoparticles loaded with astaxanthin and evaluation of anti-photodamage effect in vitro. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191184. [PMID: 31824727 PMCID: PMC6837188 DOI: 10.1098/rsos.191184] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/25/2019] [Indexed: 05/03/2023]
Abstract
Astaxanthin is a xanthophyll carotenoid with high beneficial biological activities, such as antioxidant function and scavenging oxygen free radicals, but its application is limited because of poor water solubility and low bioavailability. Here, we prepared and optimized poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with astaxanthin using the emulsion solvent evaporation technique and investigated the anti-photodamage effect in HaCaT cells. The four-factor three-stage Box-Behnken design was used to optimize the nanoparticle formulation. The experimental determination of the optimal nanoparticle size was 154.4 ± 0.35 nm, the zeta potential was 22.07 ± 0.93 mV, encapsulation efficiency was 96.42 ± 0.73% and drug loading capacity was 7.19 ± 0.12%. The physico-chemical properties of the optimized nanoparticles were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and thermo-gravimetric analyser. In vitro study exhibited the excellent cell viability and cellular uptake of optimized nanoparticles on HaCaT cells. The anti-photodamage studies (cytotoxicity assay, reactive oxygen species content and JC-1 assessment) demonstrated that the optimized nanoparticles were more effective and safer than pure astaxanthin in HaCaT cells. These results suggest that our PLGA-coated astaxanthin nanoparticles synthesis method was highly feasible and can be used in cosmetics or the treatment of skin diseases.
Collapse
Affiliation(s)
| | | | | | - Fanhui Kong
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Kun Wei
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
6
|
Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. Int J Mol Sci 2018; 19:E325. [PMID: 29361800 PMCID: PMC5796267 DOI: 10.3390/ijms19010325] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| |
Collapse
|
7
|
Ming L, Li Z, Wu F, Du R, Feng Y. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control. PLoS One 2017; 12:e0180209. [PMID: 28662115 PMCID: PMC5491152 DOI: 10.1371/journal.pone.0180209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/12/2017] [Indexed: 12/14/2022] Open
Abstract
Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.
Collapse
Affiliation(s)
- Liangshan Ming
- Engineering Research Center of Modern Preparation of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (RF Du); , (Yi F)
| | - Yi Feng
- Engineering Research Center of Modern Preparation of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (RF Du); , (Yi F)
| |
Collapse
|